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Regularity Theory for Weak Solutions

Recall that we have defined the weak solution u for the Poisson equation

4u = f , in Ω , u = g on ∂Ω ( 1 )

by a function u ∈ W1 , 2 such that u − g ∈ W0
1 , 2 and

∫
∇u · ∇v +

∫
f v = 0 ( 2 )

for all v ∈ W0
1 , 2 ( Ω) . We will discuss the regularity of u in this lecture. To do this, we need to survey the

theory of spaces similar to W1 , 2 , that is, the Sobolev spaces.

1 . Sobolev spaces.
Sobolev spaces are originally designed with the purpose of studying elliptic PDEs. In this section we

only sketch its major properties. For details, see J. Jost Partial Differential Equations , § 8. 1 . For more
details, see L. Tartar An Introduction to Sobolev spaces and interpolation spaces , available online at
http: / /www. math. cmu. edu/cna/publications. html, or R. A. Adams Sobolev Spaces , Academic Press.

Definition 1 . The Sobolev space Wk , p( Ω) contains al l the distributions whose distributional derivatives
are Lp integrab le :

Dαu ∈ Lp( Ω) , ∀| α | 6 k. ( 3)

Remark 2. The space Lp( Ω) can be viewed from two perspects:

1 . It contains distributions that are

a) ( for p= 1 ) integrable;

b) ( for 1 < p< ∞ ) bounded in the following sense:

T( φ ) 6 K
( ∫

φq
) 1 / q

( 4)

for all φ ∈ C0
∞ ( Ω) . Here q =

p

p − 1
( that is, 1

p
+

1

q
= 1 ) ;

c) ( for p= ∞ ) essentially bounded.

2 . For 1 6 p< ∞ , Lp is the completion of the space C0
∞ ( Ω) ( or C∞ ( Ω) ) under the norm

‖ f ‖ L p ≡
( ∫

Ω

f p
) 1 / p

. ( 5)

The space Wk , p( Ω) has the following properties.

1 . Wk , p( Ω) is complete with respect to the norm

‖ u ‖
W k , p ( Ω )

≡
( ∑

| α | 6 k

∫

Ω
| Dαu | p

) 1 / p

. ( 6)

The Sobolev space W0
k , p( Ω) is the completion of the set C0

∞ ( Ω) with respect to this norm.

Note. For general Ω , W0
k , p( Ω) = Wk , p( Ω) only when k = 0 . For other k ’ s the two spaces are dif-

ferent.

2 . C∞ ( Ω) is dense in Wk , p( Ω) .

3 . The most important properties of Sobolev spaces are the embedding theorems.



Theorem 3. ( Sobolev embedding)

W0
1 , p( Ω) ⊂

{
L

n p

n − p p< n

C0
(
Ω̄
)
p> n

. ( 7)

Moreover we have

‖ u ‖
L ( n p ) / n − p 6 C ‖ ∇u ‖ L p ; sup

Ω
| u | 6 C | Ω |

1

n
− 1

p ‖ ∇u ‖ L p . ( 8)

Scaling. Instead of proving the theorem, we present a “back-of-envelope” way of remembering the
formulas.

Denote by l the length scale and h the height scale. Then we have

‖ u ‖ L q ∼ ( hq ln)
1 / q ; ‖ ∇u ‖ L p∼

( (
h

l

) p
ln
) 1 / p

; sup
Ω
| u | ∼ h. ( 9)

We see that when q =
n p

n − p ( require p < n) , the scaling of ‖ u ‖ L q and ‖ ∇u ‖ L p are the same, there-
fore we expect an absolute constant ( in particular, the constant C in

‖ u ‖
L ( n p ) / n − p 6 C ‖ ∇u ‖ L p ( 1 0)

is independent of Ω . It also works when Ω = Rn . 1 ) ; When p> n , we have

‖ ∇u ‖ L p∼ h l (n− p) / p∼ ( sup | u | ) ( ln)
1 / p− 1 /n , ( 1 1 )

the relation

sup
Ω
| u | 6 C | Ω |

1

n
− 1

p ‖ ∇u ‖ L p ( 1 2 )

is implied after realizing ln is the scaling of the volumn | Ω | .

Corollary. Iterating, we have

W0
k , p( Ω) ⊂




L

n p

n − k p ( Ω) k p< n

Cm( Ω) 0 6 m < k − n
p

. ( 1 3)

The same scaling argument can serve as intuition.
One can further refine the result and show that

H0
1 , p( Ω) ⊂ C1 − n

p
(
Ω̄
)

( 1 4)

when 1 − d

p
is not an integer.

2. L2 regularity.

2. 1 . Interior regularity.
Our goal is the prove the following theorem, which justifies the intuition that u is twice more differen-

tiable than f . By “interior regularity”, we mean we do not deal with boundary data, and therefore the L2 -
norm of u is necessary in the RHS.

Theorem 4. Let u ∈ W1 , 2 ( Ω) be a weak so lution of 4u = f with f ∈ L2 ( Ω) . For any Ω ′ ⊂ ⊂ Ω , we have
u ∈ W2 , 2 ( Ω ′) , and

‖ u ‖
W 2 , 2 ( Ω ′ )

6 C
(
‖ u ‖ L 2 ( Ω )

+ ‖ f ‖ L 2 ( Ω )

)
. ( 1 5)

where the constant depends on the distance between Ω ′ and ∂Ω . Furthermore , 4u = f almost everywhere
in Ω .

1 . Compare with the Poincaré inequality!



Remark 5. The difficulty in proving the theorem lies in the fact that we have to show u ∈ W2 , 2 . Once
this is known, the estimate is relatively easy to establish.

1 . We first show that

‖ ∇u ‖ L 2 ( Ω ′ )
2 6 1 7

δ2 ‖ u ‖ L 2 ( Ω )

2
+ δ2 ‖ f ‖ L 2 ( Ω )

2
. ( 1 6)

without any extra assumptions.
Let η( x) be a “cut-off” function defined by

η( x) =





1 x ∈ Ω ′

1 − 1

δ
dist(x , Ω ′) 0 6 dist( x , Ω ′) 6 δ

0 dist( x , Ω ′) > δ

( 1 7)

and set the test function

v = η2 u ∈ W0
1 , 2 ( Ω) . ( 1 8)

Some calculation yields
∫

Ω

η2 | ∇u | 2 + 2

∫

Ω
( η ∇u) · ( u∇η) = −

∫

Ω

η2 f u. ( 1 9)

Using Young’ s inequality

| a b | 6 ε

2
a2 +

1

2 ε
b2 a , b ∈ R, ε > 0 ( 20)

on the 2nd term on the LHS and on the RHS we have
∫

Ω

η2 | ∇u | 2 6 1

2

∫

Ω

η2 | ∇u | 2 + 2

∫

Ω

u2 | ∇η | 2 +
1

2 δ2

∫
η2 u2 +

δ2

2

∫
η2 f2 . ( 21 )

Moving the first term on the RHS to the left, we have
∫

Ω ′
| ∇u | 2 6

(
1 6
δ2

+
1

δ2

) ∫

Ω

u2 + δ2

∫

Ω

f2 . ( 22 )

2 . Note that
∫
| 4u | 2 =

∫ ∣∣ ∇2u
∣∣ 2 + boundary terms. if we assume u ∈ W3 , 2 . Thus using 4u as test

function we obtain ∥∥ ∇2u
∥∥
L 2 ( Ω ′ )

2 6 ‖ f ‖ L 2 ( Ω )

2 . ( 23)

Proof. Let Ω ′ ⊂ ⊂ Ω ′′ ⊂ ⊂ Ω , with dist( Ω ′′ , ∂Ω) > δ/4 , dist( Ω ′ , ∂Ω ′′) > δ/4 .
Now choose η ∈ C0

1 ( Ω ′′) with η = 1 on Ω ′ and | ∇η | 6 8/δ , and set

v = η2 4 ihu ( 24)

where

4 ihu( x) =
u( x + h ei) − u(x )

h
( 25)

Then we have ∫

Ω ′ ′
∇
(
4 ihu

)
· ∇v =

∫

Ω ′ ′
4 ih (∇ u) · ∇v

= −
∫

Ω ′ ′
∇u · ∇

(
4 ihv

)

=

∫

Ω ′ ′
f 4 ihv

6 ‖ f ‖ L 2 ( Ω )
‖ ∇v ‖ L 2 ( Ω ′ ′ )

. ( 26)

Recalling

v = η2 4 ihu ( 27)



We have ∫

Ω ′ ′
∇
(
4 ihu

)
· ∇

(
η2 4 ihu

)
6 ‖ f ‖ L 2 ( Ω )

∥∥ ∇
(
η2 4 ihu

) ∥∥
L 2 ( Ω ′ ′ )

. ( 28)

The terms can be expanded to obtain
∫

Ω ′ ′
η2

∣∣ ∇
(
4 ihu

) ∣∣ 2 6 ‖ f ‖ L 2 ( Ω )

∥∥ ∇
(
η2 4 ihu

) ∥∥
L 2 ( Ω ′ ′ )

− 2

∫

Ω ′ ′

(
η ∇4 ihu

)
·
(
4 ihu∇η

)

6 2 ‖ f ‖ L 2 ( Ω )

2 +
1

8

∥∥ ∇
(
η2 4 ihu

) ∥∥
L 2 ( Ω ′ ′ )

2
+

1

4

∫

Ω ′ ′

∣∣ η ∇4 ihu
∣∣ 2 + 8

∫

Ω ′ ′
| ∇η | 2

∣∣ 4 ihu
∣∣ 2 . ( 29)

This gives
3

4

∫

Ω ′ ′

∣∣ η ∇4 ihu
∣∣ 2 6 2 ‖ f ‖ L 2 ( Ω )

2
+

1

8

∥∥ ∇
(
η2 4 ihu

) ∥∥
L 2 ( Ω ′ ′ )

2
+ 8

∫
| ∇η | 2

∣∣ 4 ihu
∣∣ 2 . ( 30)

To proceed further, we need to study the two terms 1

8

∥∥ ∇
(
η2 4 ihu

) ∥∥
L 2 ( Ω ′ ′ )

2
and 8

∫
| ∇η | 2

∣∣ 4 ihu
∣∣ 2 .

− 1

8

∥∥ ∇
(
η2 4 ihu

) ∥∥
L 2 ( Ω ′ ′ )

2 . We have

∥∥ ∇
(
η2 4 ihu

) ∥∥
L 2 ( Ω ′ ′ )

2 6 2
∥∥ ( ∇

(
η2
) ) ∣∣ 4 ihu

∣∣ ∥∥
L 2

2
+ 2

∥∥ η2
∣∣ ∇ 4 ihu

∣∣ ∥∥
L 2

2

6 2
(
sup

∣∣ ∇
(
η2
) ∣∣ ) ∥∥ 4 ihu

∥∥
L 2

2
+ 2

∥∥ η
∣∣ ∇ 4 ihu

∣∣ ∥∥
L 2

2
. ( 31 )

Where we have used the fact that η2 6 η .
− 8

∫
| ∇η | 2

∣∣ 4 ihu
∣∣ 2 . We have

∫
| ∇η | 2

∣∣ 4 ihu
∣∣ 2 6

(
sup | ∇η | 2

) ∫ ∣∣ 4 ihu
∣∣ 2 =

(
sup | ∇η | 2

) ∥∥ 4 ihu
∥∥
L 2

2
. ( 32 )

Thus we have

1

2

∫

Ω ′ ′

∣∣ η ∇4 ihu
∣∣ 2 6 2 ‖ f ‖ L 2 ( Ω )

2 +
1

4

(
sup

∣∣ ∇
(
η2
) ∣∣ ) ∥∥ 4 ihu

∥∥
L 2

2
+ 8

(
sup | ∇η | 2

) ∥∥ 4 ihu
∥∥
L 2

2
. ( 33)

The following lemma then guarantees the existence of ∇2u and also gives the desired estimate.

Lemma. Let

4 ihu ≡
u(x + h e i) − u( x)

h
, h

�
0 ( 34)

with e i being the ith unit vector of Rn . Let Ω ′ ⊂ ⊂ Ω and | h | < dist( Ω ′ , ∂Ω) . Then

1 . If u ∈ L2 ( Ω) and there is K < ∞ such that
∥∥ 4 ihu

∥∥
L 2 ( Ω ′ )

6 K ( 35)

then u ∈ W1 , 2 ( Ω ′) and

‖ ∂x iu ‖ L 2 ( Ω ′ ) 6 K. ( 36)

2. Converse ly, if u ∈ W1 , 2 ( Ω ′) , then 4 ihu ∈ L2 ( Ω ′) with
∥∥ 4 ihu

∥∥
L 2 ( Ω ′ )

6 ‖ ∂x iu ‖ L 2 ( Ω ′ )
. ( 37)

Proof.

1 . We first show that 4 ihu converges as distributions in D ′( Ω ′) to the distributional derivative of u .
Check ∫

Ω ′

(
4 ihu

)
ϕ = −

∫
u
(
4 i− hϕ

) �
−
∫
u (∂x iϕ ) ( 38)

by Lebesgue’ s dominated convergence theorem.
We have

(∂x iu) ( ϕ ) = lim
∫

Ω ′

(
4 ihu

)
ϕ 6

∥∥ 4 ihu
∥∥
L 2 ( Ω ′ )

‖ ϕ ‖ L 2 6 K ‖ ϕ ‖ L 2 , ∀ϕ ∈ C0
∞ ( Ω ′) . ( 39)



Now recall that C0
∞ ( Ω ′) is dense in L2 ( Ω ′) , (∂x iu) can be identified with a bounded linear operator

on L2 , which means it can be identified with a function in L2 ( Ω ′) . 2

2 . S ince C∞ is dense in W1 , 2 , we only need to consider the case when u ∈ C∞ ∩ W1 , 2 . In this case we
have

4 ihu(x ) =
1

h

∫

0

h

∂x iu( x1 , � , x i− 1 , x i + s , x i+ 1 , � , xn) ds . ( 40)

This gives
∣∣ 4 ihu( x)

∣∣ 2 6 1

h

∫

0

h

| ∂x iu( x1 , � , x i− 1 , x i + s , x i+ 1 , � , xn) | 2 ds ( 41 )

due to Hölder’ s inequality. Now integrate over Ω ′ and exchange the order of integration on the
RHS we obtain the result. �

With the help of this lemma ( part b) ) we have

1

2

∫

Ω ′ ′

∣∣ η ∇4 ihu
∣∣ 2 6 2 ‖ f ‖ L 2 ( Ω )

2
+

1

4

(
sup

∣∣ ∇
(
η2
) ∣∣ ) ‖ ∂x iu ‖ L 2

2
+ 8

(
sup | ∇η | 2

)
‖ ∂x iu ‖ L 2

2
. ( 42 )

which is a uniform bound on
∥∥ 4 ih∇u

∥∥
L 2 ( Ω ′ ′ )

6
∫

Ω ′ ′

∣∣ η ∇4 ihu
∣∣ 2 . ( 43)

Now part a) of the lemma yields ∂x i∇u ∈ L2 ( Ω ′ ′) and also the desired estimate. �

When f has better regularity, we can differentiate the equation first and obtain the following interior
regularity result.

Theorem 6. Let u ∈ W1 , 2 ( Ω) be a weak solution of 4u = f. If f ∈ Wk , 2 ( Ω) , then u ∈ Wk+ 2 , 2 ( Ω ′) for any
Ω ′ ⊂ ⊂ Ω , and

‖ u ‖
W k + 2 , 2 ( Ω ′ )

6 C
(
‖ u ‖ L 2 ( Ω )

+ ‖ f ‖
W k , 2 ( Ω )

)
. ( 44)

Here the constant depends on d , h , dist( Ω ′ , Ω) .

2. 2 . Boundary regularity.
We consider the Poisson equation with Dirichlet boundary condition:

4u = f in Ω; u = g on ∂Ω ( 45)

where g can be extended to a function on the whole Ω . Our purpose is to establish the following result:

Theorem 7. Let u be a weak solution with u − g ∈ W0
1 , 2 ( Ω) . If f ∈ Wk , 2 ( Ω) , g ∈ Wk+ 2 , 2 ( Ω) , and Ω be of

class Ck+ 2 , then

u ∈ Wk+ 2 , 2 ( Ω) , ( 46)

and we have the estimate

‖ u ‖
W k + 2 , 2 ( Ω )

6 C
(
‖ f ‖

W k , 2 ( Ω )
+ ‖ g ‖

W k + 2 , 2 ( Ω )

)
. ( 47)

The constant C depends on Ω .

Proof. The proof of this theorem is identical to the proof of a similar theorem for general linear elliptic
equations (we will see why soon) . As we will not discuss details about the general case, we will only give
an outline here. For details see J. Jost Partial Differential Equations § 8. 3.

1 . First note that since g ∈ Wk+ 2 , 2 ( Ω) , we can replace u by u − g and reduce the problem to

4u = f , u ∈ W0
1 , 2 ( Ω) . ( 48)

2 . Riesz representation theorem.



2 . We first establish W 1 , 2 bound:

‖ u ‖
W 1 , 2 6 C

(
‖ g ‖

W 1 , 2 + ‖ f ‖ L 2

)
. ( 49)

To see this, use v = u − g as the test function. We obtain
∣∣∣∣
∫
∇u · ∇ (u − g)

∣∣∣∣ =

∣∣∣∣
∫
f (u − g)

∣∣∣∣ ( 50)

therefore
∫
| ∇u | 2 6

∣∣∣∣
∫
∇u · ∇g

∣∣∣∣ +

∣∣∣∣
∫
f ( u − g)

∣∣∣∣ 6
1

4

∫
| ∇u | 2 +

∫
| ∇g | 2 +

1

ε

∫
f2 + ε

∫
| u − g | 2 . ( 51 )

Apply Poincaré’ s inequality to the last term and choosing ε to be small enough, we obtain the
desired estimate.

3. For any Ω ′ ⊂ ⊂ Ω , we can estimate
∫

Ω ′

∣∣ ∂x ix ju
∣∣ 2 6 C

( ∫
u2 +

∫
f2

)
6 C

(
‖ g ‖

W 1 , 2 + ‖ f ‖ L 2

)
. There-

fore it suffices to establish the desired estimate in a neighborhood of the bondary ∂Ω .

4. We illustrate the basic idea by assuming part of the boundary is in xn = 0 . We try to show the
W2 , 2 bound for u in a small half-ball BR

+ ≡ BR ∩ {xn > 0} . Note that once this is done, the
boundary, which is compact, can be covered by finitely many such balls.

First note that ∂x iu is well defined in BR
+ and belongs to L2

(
BR

+ ) . Now let η be a cut-off func-
tion in C0

∞ (BR) . For all j
�
n , 4 j

± hu is well-defined and we can use the test function 4 j
h
(
η2 4 j

hu
)

as we did when proving the interior regularity, and obtain the desired bound for all ∂x ix ju except
∂xnxnu .

Now notice that the equation implies

∂xnxnu = f −
∑

i= 1

n− 1

∂x ix iu ( 52 )

and therefore this term enjoys the same bound as other double derivatives.

5 . For general Ω , we need to first cover ∂Ω by small balls, and then do a change of variable on each of
the balls to “straighten” that part of the boundary. After doing this, however, the equation does
not have the simple form

4u = f ( 53)

anymore and proving the estimate becomes as difficult as proving similar estimates for the general
case. �

Remark 8. It turns out that when the boundary is smooth, one can actually extend the regularity to Ω̄ .

Theorem. Let Ω ⊂ Rn be a bounded domain of class C∞ , and le t g ∈ C∞ (∂Ω) , f ∈ C∞ ( Ω) . Then the
Dirichlet prob lem

4u = f in Ω; u = g on ∂Ω , ( 54)

possesses a unique solution u which is C∞
(

Ω̄
)
.

The key to the proof is the embedding Wk , p( Ω) ⊂ Cm
(
Ω̄
)
for 0 6 m < k − d

p
. For details, see J. Jost

Partial Differential Equations , § 8 . 4.

3. Lp regularity.
The regularity theory can be extended to spaces Wk , p. We will only sketch the results here. For

details, see J. Jost Partial Differential Equations , Chap. 9 .
For f ∈ Lp( Ω) , we can extend it by 0 to obtain f ∈ Lp(Rn) . Recall the fundamental solutions:

Γ( x , y) ≡





1

2 π
log | x − y | n = 2

1

n ( 2 − n) α(n)
| x − y | 2− n n > 3

. ( 55)



We can define the Newton potential

w (x ) ≡
∫

Γ(x , y) f ( y) dy. ( 56)

which solves

4u = f ( 57)

almost everywhere.
The basis for the Lp theory is the following Calderon-Zygmund inequality.

Theorem 9. Let 1 < p < ∞ , f ∈ Lp( Ω) , and le t w be the Newton potential of f. Then w ∈ W2 , p( Ω) ,
4w = f almost everywhere in Ω , and

∥∥ ∇2w
∥∥
L p ( Ω )

6 C (n, p) ‖ f ‖ L p ( Ω )
. ( 58)

Using this theorem, we can obtain the following interior regularity result.

Theorem 10. Let u ∈ W1 , 1 ( Ω) be a weak solution of 4u = f, f ∈ Lp( Ω) , 1 < p < ∞ . Then u ∈ W2 , p( Ω ′)
for any Ω ′ ⊂ ⊂ Ω , and

‖ u ‖
W 2 , p ( Ω ′ )

6 C
(
‖ u ‖ L p ( Ω )

+ ‖ f ‖ L p( Ω )

)
. ( 59)

Here C = C(n, p, Ω ′ , Ω) .

Further readings.

• J. Jost, Partial Differential Equations , Chap 8, 9 .

Exercises.

Exercise 1 . Let

f (x ) = | x | s , s ∈ R . ( 60)

Consider the domains

Ω = BR , Ω ′ = Rn \BR . ( 6 1 )

For which values of p, n , s is f ∈ W 1 , p( Ω) or W 1 , p( Ω ′ ) ?
( Optional) How about Wk , p( Ω) , Wk , p( Ω ′ ) ?

Exercise 2 . Write down a proof of the higher regularity result .

Theorem. Le t u ∈ W 1 , 2 ( Ω) be a weak so lution of 4u = f. If f ∈ Wk , 2 ( Ω) , then u ∈ Wk+ 2 , 2 ( Ω ′ ) for any Ω ′ ⊂ ⊂ Ω , and

‖ u ‖
W k + 2 , 2 ( Ω ′ )

6 C
(
‖ u ‖ L 2 ( Ω)

+ ‖ f ‖
W k , 2 ( Ω)

)
. ( 62 )

Here the constant depends on d, h , dist ( Ω ′ , Ω) .

Exercise 3 . ( Optional)Use the L2 version of the Calderon-Zygmund inequality:
∥∥ ∇2w

∥∥
L 2 ( Ω)

6 ‖ f ‖ L 2 ( Ω)
( 63)

where w is the Newton potential of f , to prove the inner regularity estimate on a ball: for any weak solution u of 4u =

f , we have

‖ u ‖
W 2 , 2 (B r)

6 C
(
‖ u ‖ L 2 (BR)

+ ‖ f ‖ L 2 (BR)

)
. ( 64)

Where r < R . For simplicity, you do not need to worry about the regularity of u , that is , work as if u ∈ C∞ .
H int : Follow these steps.

1 . For any v ∈ C0
∞ (BR ) , v =

∫
Γ( x , y) (4v ) ( y) dy . That is , v is the Newton potential of its Laplacian.

2 . Use a cut-off function η whose support is in Br ′ with r < r ′ < R , apply C-Z inequality on v = η u to obtain

∥∥ ∇2u
∥∥
L 2 (Br )

6 C
(
‖ u ‖ L 2 (Br ′ )

+ ‖ f ‖ L 2 (B r ′ )
+ ‖ ∇u ‖ L 2 (B r ′ )

)
. ( 65 )

3 . Use another cut-off function ξ whose support is in BR , to obtain

‖ ∇u ‖ L 2 (Br ′ )
6 C

(
‖ u ‖ L 2 (BR)

+ ‖ f ‖ L 2 (BR)

)
. ( 66)


