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The Dirichlet’ s Principle

In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

4u = 0 in Ω , u = g on ∂Ω . ( 1 )

1 . Dirichlet’ s Principle.
If we multiply the equation by any v ∈ C0

∞ ( Ω) and integrate, we have

0 =

∫
(4u) v = −

∫
∇u · ∇v. ( 2 )

As a consequence, we have
∫
| ∇ (u + v ) | 2 =

∫
| ∇u | 2 +

∫
| ∇v | 2 >

∫
| ∇u | 2 . ( 3)

In other words, u is the minimizer of the function

D ( u) ≡
∫

Ω
| ∇u | 2 dx. ( 4)

Conversely, if u is a minimizer, then for any v ∈ C0
∞ , and t > 0 , we have

∫
| ∇ ( u + t v ) | 2 >

∫
| ∇u | 2 �

t2
∫
| ∇v | 2 − 2 t

∫
∇u · ∇v > 0 ( 5)

which implies ∫
(4u) v = −

∫
∇u · ∇v = 0 ( 6)

by taking t↘ 0 and consequently

4u = 0 ( 7)

when u ∈ C2 .
From the above discussion we conclude the following Dirichlet principle.

Dirichlet principle. u solves

4u = 0 in Ω , u = g on ∂Ω . ( 8)

if and only if u minimizes

D ( u) ≡
∫

Ω
| ∇u | 2 dx. ( 9)

A moment’ s inspection reveals that the principle cannot be automatically true without specifying the
class of functions u should belong to: D (u) is well-defined when u ∈ C1 but u needs to be in C2 to satisfy
the Laplace’ s equation. And furthermore, it is not clear yet why D (u) should have a minimizer.

We first establish

Theorem 1 . D (u) has a minimizer u satisfying
∫
| ∇u | 2 < ∞ , that is ∇u ∈ L2 .

Proof. Let un be a minimizing sequence, that is

lim
n→∞

D (un) = infD (u) . ( 1 0)



Then one calculates

D ( un − um) =

∫
| ∇un − ∇um | 2

=

∫
| ∇un | 2 − 2 ∇un · ∇um + | ∇um | 2

= 2

∫
| ∇un | 2 + 2

∫
| ∇um | 2 −

∫
| ∇un + ∇um | 2

= 2 D (un) + 2 D (um) − 4D

(
un + um

2

)
. ( 1 1 )

Since

4D

(
un + um

2

)
> 4 infD ( u) = lim [ 2 D ( un) + 2 D ( um ) ] , ( 1 2 )

we see that

D (un − um) → 0 n, m→∞ ( 1 3)

or equivalently {∇un } is a Cauchy sequence in the space L2 of all square integrable functions. Thus there
is a limit function w = lim∇un which is square integrable.

It turns out that

1 . w = ∇ u for some function u in the sense of distributions.

2 . D (u) 6 limD (un) which means u is a minimizer. �

From the above theorem we see that only the existence of ∇u ( as a square integrable function) is guaran-
teed. Therefore the Dirichlet principle only makes sense when we re-define the Laplace equation to its
weak formulation: ∫

∇u · ∇v = 0 ∀v ∈ C0
∞ ( Ω) , u = g on ∂Ω . ( 1 4)

2. The Sobolev space W 1 , 2 ( Ω) .

Definition 2. The Sobolev space W1 , 2 ( Ω) is defined as the space of those u ∈ L2 ( Ω) whose distributional
derivatives ∂x iu also belong to L2 ( Ω) .

Proposition 3.

i. W 1 , 2 ( Ω) becomes a Hilbert space after we define the inner product

(u , v )
W 1 , 2 ( Ω )

≡
∫

Ω

u v +
∑

i= 1

n ∫

Ω

∂x iu ∂x iv . ( 1 5)

The induced norm is

‖ u ‖
W 1 , 2 ( Ω )

≡ (u , u)
W 1 , 2 ( Ω )

1 / 2 . ( 1 6)

ii. C∞ ( Ω) is dense in W1 , 2 ( Ω) .

Proof. See J. Jost Partial Differential Equations , § 7. 2 . �

Example 4.

1 . u( x) = | x | ∈ W1 , 2 ( − 1 , 1 ) ;

2 . u( x) =

{
1 0 6 x < 1
0 − 1 < x < 0

�
W1 , 2 ( − 1 , 1 ) .

Definition 5. The closure ofC0
∞ ( Ω) in W1 , 2 ( Ω) is denoted W0

1 , 2 ( Ω) .



Example 6.

1 . u( x) = 1 − | x | ∈ W0
1 , 2 ( − 1 , 1 ) .

2 . u( x) ≡ 1
�
W0

1 , 2 ( − 1 , 1 ) . 1

Remark 7. Intuitively, W0
1 , 2 ( Ω) are those functions in W 1 , 2 ( Ω) which are 0 on the boundary.

The following properties are important for studying PDEs. We will omit their proofs, details can be
found in J. Jost Partial Differential Equations , § 7. 2 .

Lemma 8.

• For u ∈ W1 , 2 ( Ω) , f ∈ C1 ( Ω) , suppose

sup
y∈ R
| f ′( y) | < ∞ . ( 1 9)

Then f ◦ u ∈ W1 , 2 ( Ω) and D ( f ◦ u) = f ′(u) Du .

• The above is stil l true when f ∈ Lip( Ω) . 2 In particular, if u ∈ W1 , 2 ( Ω) , so is | u | , and
D | u | = ( sign u) Du. ( 20)

Now recall the minimization problem in the Dirichlet principle:

min
∫
| ∇u | 2 , u = g on ∂Ω . ( 21 )

We would like to rigorously specify over which set the minimization is taking place. This set is exactly the
space W1 , 2 . Thus we would like to minimize over all functions in W1 , 2 with boundary value g . Recall that
if un is a minimizing sequence, then ∇un is a Cauchy sequence in L2 . If furthermore un is a Cauchy
sequence in L2 too, we know that the sequence is a Cauchy sequence in W 1 , 2 .

The following Poincaré inequality guarantees that un is a Cauchy sequence in L2 .

Lemma 9. There is a constant C, depending on the bounded set Ω only, such that for all u ∈ W0
1 , 2 ( Ω) ,

we have

‖ u ‖ L 2 ( Ω )
6 C ‖ ∇u ‖ L 2 ( Ω )

. ( 22 )

Proof. We prove by contradiction. Assume that there are uk such that

‖ uk ‖ L 2 ( Ω )
> k ‖ ∇uk ‖ L 2 ( Ω )

. ( 23)

Rescaling, we can set ‖ uk ‖ L 2 = 1 . Thus ∇uk→ 0 in L2 . By the compactness theorem of Rellich3 , there is a
subsequence uk j which convergens in L2 . Thus

{
uk j

}
converges in W0

1 , 2 to some limit function u satis-
fying

‖ u ‖ L 2 = 1 , ∇u = 0 , u ∈ W0
1 , 2 ( 24)

where the contradiction is obvious. �

1 . To see this , we assume the contrary, that is there are un ∈ C0
∞ ( − 1 , 1 ) such that un→ u ≡ 1 in W 1 , 2 . This means

∫

− 1

1

(un − 1 ) 2 dx � 0 ,

∫

− 1

1 (
un
′ ) 2

� 0 . ( 1 7)

But the latter implies

| un( x ) | 6
∣∣∣∣
∫

− 1

x

un
′
∣∣∣∣ 6

∫

− 1

1 ∣∣ un′
∣∣ dx 6 2

√
( ∫

− 1

1 (
un
′ ) 2 dx

) 2

� 0 ( 1 8 )

for any x ∈ ( − 1 , 1 ) and furthermore the convergence is uniform in x . Contradiction.
2. The idea is to approximate f b y C1 functions, and use Le be sgue ’ s domina ted convergence Theorem .

3 . Theorem. Le t Ω ⊂ Rn be open and bounded, and le t {un } be a bounded se quence in W0
1 , 2

( Ω) , then there is a sub se -
quence which converge s strongly in L2 ( Ω) .



Remark 1 0. The following argument yields an explicit C when Ω is contained in a box of side R ( denote
the box by CR ) :

Extend u by 0 outside Ω we obtain a W1 , 2 function, still denoted u , defined on the box. Without loss
of generality we assume the box is 0 6 x i 6 R . Integrating from xn = 0 we have

u(x1 , � , xn) =

∫

0

xn

∂xnu(x1 , � , xn− 1 , t) dt. ( 25)

Now we have
∫
| u | 2 6

∫ (
| u(x1 , � , xn) |

∫

0

xn

| ∇u | dt
)

dx1
� dxn

6
∫ (

| u(x1 , � , xn) |
∫

0

R

| ∇u | dt
)

dx1
� dxn

=

∫∫

0

R

| u( x1 , � , xn) | | ∇u(x1 , � , t) | dt dx1
� dxn

6
( ∫∫

0

R

| u(x1 , � , xn) | 2
) 1 / 2 ( ∫∫

| ∇u(x1 , � , t) | dt dx1
� dxn

) 1 / 2

6 R1 / 2

( ∫
| u | 2

) 1 / 2

R1 / 2

( ∫
| ∇u | 2

) 1 / 2

. ( 26)

and thus obtaining

‖ u ‖ L 2 ( Ω )
6 R ‖ ∇u ‖ L 2 ( Ω )

. ( 27)

A more refined ( and more general, as it can be applied to unbounded regions) estimate has the constant

C =

(
| Ω |
α (n)

) 1 /n

( 28)

where | Ω | is the volume of Ω and α (n) is the volume of the n-dimensional unit ball. See the proof of The-
orem 7. 2 . 2 in J. Jost Partial Differential Equations .

3. Weak formulation.
From the above discussion we see that the minimizer of the Dirichlet functional is in W1 , 2 ( Ω) . Now we

are ready to give the definition of a solution u ∈ W1 , 2 ( Ω) :

Definition 1 1 . u ∈ W1 , 2 ( Ω) is a weak solution of the Laplace equation

4u = 0 , in Ω , u = g , on ∂Ω ( 29)

if ∫
∇u · ∇v = 0 ∀v ∈ W0

1 , 2 ( Ω) ; u − g ∈ W0
1 , 2 ( Ω) . ( 30)

Remark 1 2.

1 . This definition requires that the boundary value g can be extended to a function in W1 , 2 ( Ω) . This
can indeed be done. See e. g. R. A. Adams Sobolev Spaces .

2 . S ince C0
∞ is dense in W0

1 , 2 ( Ω) ( by definition! ) , we can also use ∀v ∈ C0
∞ in the definition. The cur-

rent definition is however more convenient. For example, when the solution u exists, the non-
smooth function max { 0 , u − k } ∈ W0

1 , 2 ( Ω) ( if k is bigger than the boundary values) can be used as
test functions. 4

4. This choice of test functions is used in the so-called De G iorgi method, which obtains L∞ bound from energy bound.



4. Poisson equation.
The above discussions can be applied to the Poisson equation

4u = f , in Ω , u = g , on ∂Ω ( 31 )

with little modification. In this case, the definition for weak solutions is

Definition 1 3. u ∈ W1 , 2 ( Ω) is a weak solution of the Poisson equation

4u = f , in Ω , u = g , on ∂Ω ( 32 )

if ∫
∇u · ∇v +

∫
f v = 0 ∀v ∈ W0

1 , 2 ( Ω) ; u − g ∈ W0
1 , 2 ( Ω) . ( 33)

The weak formulation is advantageous in getting quick estimates. For example, when g = 0 , we have

‖ u ‖
W 1 , 2 6 C ‖ f ‖ L 2 ( 34)

for some constant C .
To see this, note that when g = 0 , u ∈ W0

1 , 2 can be used as a test function, which gives
∫
| ∇u | 2 = −

∫
fu 6 ‖ f ‖ L 2 ‖ u ‖ L 2 . ( 35)

Applying Poincaré inequality gives the desired estimate.

5. Introduction to the direct method.
The direct method shows the existence/uniqueness of the solution of PDEs by studying its variational

formulation. We sketch this approach by studying the Poisson equation with zero boundary condition:

4u = f , u ∈ W0
1 , 2 ( Ω) . ( 36)

We know that any weak solution to this problem is a minimizer of the functional

D (u) =

∫

Ω
| ∇u | 2 +

∫
f u. ( 37)

We would like to show that the minimizer exists and is unique. An outline of the argument is the fol-
lowing. Assume f ∈ L2 .

1 . Writing

D ( u) >
∫

Ω
| ∇u | 2 − ε

∫
u2 − 1

4 ε

∫
f 2 ( 38)

and recalling the Poincaré’ s inequality, we see that D (u) has finite infimum.

2 . Let un be such that D (un) ↘ infu∈W0
1 , 2 D (u) . We claim that there is a subsequence converging to

some limit u∞ ∈ W0
1 , 2 . 5 To see this, note that a uniform bound on D (un) implies a uniform bound

on
∫
| ∇un | 2 , since

D (u) > ‖ ∇u ‖ L 2

2 − ‖ u ‖ L 2 ‖ f ‖ L 2 > ‖ ∇u ‖ L 2

2 − C ‖ ∇u ‖ L 2 =
(
‖ ∇u ‖ L 2 − C

)
‖ ∇u ‖ L 2 . ( 39)

by Hölder’ s inequality and Poincaré’ s inequality.

3. Uniform boundedness of ‖ ∇un ‖ L 2 implies that un is uniformly bounded in W0
1 , 2 and thus has a

weakly6 converging subsequence, still denoted by un . We denote the limit by u∞ .

5 . This actually cannot be guaranteed now.

6 . The weak convergence is in W 1 , 2 . Recall that a sequence {un } in a Hilbert space H is weakly convergent with weak
limit u∞ ∈ H if (un , v ) � (u∞ , v ) for any v ∈ H .

Furthermore, using Rellich ’ s theorem, we see that when un converges to u∞ weakly in W 1 , 2 , we can find a subsequence,
st ill denoted un , converging to u∞ strongly in L2 , at the same time ∇un converges to ∇u∞ weakly in L2 .



4. The convexity of the functional D (u) then guarantees that

D (u∞ ) 6 liminf
n↗∞

D ( un) = inf
u∈W0

1 , 2
D (u) ( 40)

which means u∞ is a minimizer.

5 . The convexity of D (u) also guarantees the uniqueness of the minimizer.

The last few steps in general involve much technicality. 7 Interested readers can refer to the book by B.
Dacorogna for details.

Remark 1 4. This approach easily generalizes to certain nonlinear equations of the form:

− ∇ ·
(
∂F

∂p
( x , u , ∇u)

)
+
∂F

∂u
(x , u , ∇u) = 0 . ( 43)

where F( x , u , p) is smooth and convex in p, with certain growth condition at infinity. The key observa-
tion is that this equation is the condition for minimizers of the functional

D (u) =

∫

Ω

F(x , u , ∇u) dx. ( 44)

The books by B. Dacorogna and L. C. Evans are good texts for direct methods in variational problems.

Further readings.

• J. Jost, Partial Differential Equations , Chap. 7.

• B. Dacorogna, Direct Methods in the Calculus of Variations .

• L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations .

Exercises.

Exercise 1 . Consider the functional

Dp(u) ≡
∫

Ω
| ∇u | p dx , u = g on ∂Ω . ( 45 )

where 1 < p< ∞ . What equation should its minimizer satisfy? 8

7 . In our case much technicality is not involved. The only thing required is some familiarity with weak convergence in
Hilbert spaces. For example, note that when un→ u∞ weakly,

(un , un) − (u∞ , u∞ ) = lim [ (un − u∞ , un − u∞ ) ] > 0 . ( 41 )

One can even show similarly that the convergence is in fact strong.
Furthermore if u∞ and v∞ are both minimizers of the norm, we have

0 = (u∞ , u∞ ) − ( v∞ , v∞ ) = (u∞ − v∞ , u∞ − v∞ ) ( 42 )

since ( v∞ , u∞ − v∞ ) must vanish due to the fact that v∞ is a minimizer ( local minimizer is enough) .

8 . The resulting operator is called the “p-Laplacian”.


