Oct. 01

THE DIRICHLET’S PRINCIPLE
In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:
Au=0 in Q, u=g on 0. (1)

1. Dirichlet’s Principle.
If we multiply the equation by any v € C5°(£2) and integrate, we have

Oz/(Au)U:—/VU-VU. (2)
As a consequence, we have

[ 1= [ 1vap+ [ [9op> [ va 3)

In other words, u is the minimizer of the function
D(u)z/ Vu|?dz. (4)
Q

Conversely, if u is a minimizer, then for any v € C§°, and ¢ > 0, we have

/ |V(u+tv)|2>/ Vul? < t2/ |Vv|2—2t/Vu-Vv>0 (5)
which implies
/(Au)v:—/Vu-Vv:O (6)
by taking ¢ \,0 and consequently
Au=0 (7)

when u € C2.
From the above discussion we conclude the following Dirichlet principle.

Dirichlet principle. u solves
Au=0 in Q, u=g on 0. (8)

if and only if u minimizes

D(u)E/Q IVu|? da. 9)

A moment’s inspection reveals that the principle cannot be automatically true without specifying the
class of functions u should belong to: D(u) is well-defined when u € C' but u needs to be in C? to satisfy
the Laplace’s equation. And furthermore, it is not clear yet why D(u) should have a minimizer.

We first establish
Theorem 1. D(u) has a minimizer u satisfying [ |Vu|2 <0, that is Vu € L2
Proof. Let u, be a minimizing sequence, that is

lim D(uy)=1inf D(u). (10)
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Then one calculates

D(uy —up) = /|Vun—vum|2
= /|Vun|2—2Vun-Vum+|Vum|2
- 2/ |Vun|2+2/ |Vum|2—/ Vit + Vit
- 2D(un)+2D(um)—4D(u"+Tum). (11)
Since
4D(WTW>>4me(u)_hm 2 D(un) 42 D(um)), (12)
we see that
D(ty, — tp,) —0 n,m— oo (13)

or equivalently {Vu,} is a Cauchy sequence in the space L? of all square integrable functions. Thus there
is a limit function w =lim Vu,, which is square integrable.
It turns out that

1. w=Vu for some function v in the sense of distributions.
2. D(u) <lim D(uy) which means v is a minimizer. O
From the above theorem we see that only the existence of Vu (as a square integrable function) is guaran-

teed. Therefore the Dirichlet principle only makes sense when we re-define the Laplace equation to its
weak formulation:

/ Vu-Vo=0 Vv e C5°(£2), u=g on 0. (14)
2. The Sobolev space W12(Q).

Definition 2. The Sobolev space W12(Q) is defined as the space of those u € L*(Q) whose distributional
derivatives dy,u also belong to L*(12).

Proposition 3.

i. WH2(Q) becomes a Hilbert space after we define the inner product

(U’U)WL?(Q)E/Q uv—l—; Kz O U Og,v. (15)

The induced norm is

_ 1/2
200y = ()33 2 - (16)
ii. C°°(Q) is dense in WH2(Q).
Proof. See J. Jost Partial Differential Equations, §7.2. O

Example 4.
1. u(z)=|z| e WH2(—1,1);

1 0<x<l 1,2/
2. u(x)—{o —1<:c<0§éW (—1,1).

Definition 5. The closure of C§°(Q) in W2(Q) is denoted W01’2(Q).



Example 6.
Lou(z)=1—|z|€ Wy 3(—1,1).
2. u(x)=1¢ Wy3(—1,1).1

Remark 7. Intuitively, W, () are those functions in W12(Q) which are 0 on the boundary.

The following properties are important for studying PDEs. We will omit their proofs, details can be
found in J. Jost Partial Differential Equations, §7.2.

Lemma 8.
o ForueWh2(Q), feCY(Q), suppose

sup | f'(y)] < oo. (19)
yeR

Then foue WhH2(Q) and D(fou)= f'(u) Du.
e The above is still true when f € Lip(). 2 In particular, if u€ WH2(Q), so is |u|, and
D|u|= (signu) Du. (20)

Now recall the minimization problem in the Dirichlet principle:
min/ Vul?, u=g on 0. (21)

We would like to rigorously specify over which set the minimization is taking place. This set is exactly the
space W12, Thus we would like to minimize over all functions in W12 with boundary value g. Recall that
if w, is a minimizing sequence, then Vu, is a Cauchy sequence in L2. If furthermore u, is a Cauchy
sequence in L? too, we know that the sequence is a Cauchy sequence in W2

The following Poincaré inequality guarantees that u, is a Cauchy sequence in L2.

Lemma 9. There is a constant C, depending on the bounded set €2 only, such that for all u € Wol’z(Q),
we have

||u||L2(Q)<O ||vu||L2(Q)' (22)
Proof. We prove by contradiction. Assume that there are uy such that
||uk||L2(Q)>k ||vuk||L2(Q)- (23)

Rescaling, we can set ||ug|,»,=1. Thus Vuz— 0 in L?. By the compactness theorem of Rellich?, there is a
subsequence ug; which convergens in L2 Thus {ukj} converges in VVO1 2 to some limit function w satis-
fying

Jul .=1,  Vu=0, uweWy? (24)

where the contradiction is obvious. O

1. To see this, we assume the contrary, that is there are u, € C§°(—1,1) such that up, —u=1in W12 This means

1 1
/ (=1 dz—0, / 1 (ul)? — 0. )
But the latter implies a
2

i< [ <[ u;dx<ﬁ</ll (u;)2dx> —o0 (18)

for any x € (—1,1) and furthermore the convergence is uniform in x. Contradiction.
2. The idea is to approzimate f by C functions, and use Lebesgue’s dominated convergence Theorem.

3. Theorem. Let Q CR™ be open and bounded, and let {u,} be a bounded sequence in Wol’Q(Q), then there is a subse-
quence which converges strongly in L?(Q).



Remark 10. The following argument yields an explicit C' when 2 is contained in a box of side R (denote
the box by Crg):

Extend u by 0 outside 2 we obtain a W2 function, still denoted u, defined on the box. Without loss
of generality we assume the box is 0 < z; < R. Integrating from z,, =0 we have

u(T1, ..., / Oz, u(T1, ey Tp—1,t) di. (25)

/|u|2 < /(|U(:E1,,:vn)|/ ' |Vu|dt>dx1---dxn
0
R

< /(lu(:vl,...,:vn)I/O |VU|dt>dx1---dxn

= // W@, ..., )| [Vu(zy, ..., t)| dtdzy - day,

( [ b ) (/] 19utenntaran, e, )
31/2</ |u|2>1/ R1/2</ |Vu|2>1/2. (26)

<R[V o (27)

Now we have

/N

N

and thus obtaining
el e <

A more refined (and more general, as it can be applied to unbounded regions) estimate has the constant

where |Q] is the volume of © and a(n) is the volume of the n-dimensional unit ball. See the proof of The-
orem 7.2.2 in J. Jost Partial Differential Equations.

3. Weak formulation.
From the above discussion we see that the minimizer of the Dirichlet functional is in W12(Q). Now we
are ready to give the definition of a solution u € W12(€):

Definition 11. u € W1%(Q) is a weak solution of the Laplace equation
Au=0, in u=g, on 0N (29)

/Vu-szO Yo € Wy 2(Q); u—geW, Q). (30)

Remark 12.

1. This definition requires that the boundary value g can be extended to a function in W*2(Q). This
can indeed be done. See e.g. R. A. Adams Sobolev Spaces.

2. Since C§° is dense in W, ?(€2) (by definition!), we can also use Vv € C§° in the definition. The cur-
rent definition is however more convenient. For example, when the solution u exists, the non-
smooth function max {0, u — k} € Wy 3(Q) (if k is bigger than the boundary values) can be used as
test functions. 4

4. This choice of test functions is used in the so-called De Giorgi method, which obtains L* bound from energy bound.



4. Poisson equation.
The above discussions can be applied to the Poisson equation

Au=f, in €, u=g, on 0N (31)

with little modification. In this case, the definition for weak solutions is

Definition 13. u€ W12(Q) is a weak solution of the Poisson equation
Au=f, n u=g, on Of (32)
if
/ Vu~Vv+/fv:O Yoe Wy ?();  u—geW, Q). (33)

The weak formulation is advantageous in getting quick estimates. For example, when g =0, we have

[l <C Il o (34)

for some constant C.
To see this, note that when ¢=0, u e I/Vol’2 can be used as a test function, which gives

[ 19uP == [Fusislelul (3

Applying Poincaré inequality gives the desired estimate.

5. Introduction to the direct method.
The direct method shows the existence/uniqueness of the solution of PDEs by studying its variational
formulation. We sketch this approach by studying the Poisson equation with zero boundary condition:

Au=f, uecWy?*Q). (36)

We know that any weak solution to this problem is a minimizer of the functional

D(u):A |Vu|2+/fu. (37)

We would like to show that the minimizer exists and is unique. An outline of the argument is the fol-

lowing. Assume f € L.
D> [ (= [ [ (38)

1. Writing
and recalling the Poincaré’s inequality, we see that D(u) has finite infimum.

2. Let up be such that D(un) \ inf, cyy1.2 D(u). We claim that there is a subsequence converging to
some limit uq, € W2 To see this, note that a uniform bound on D(u,,) implies a uniform bound
on [ |Vu,|? since

2 2
D(u) 2 [[Vullz = lull o[l fll o = IVl = C [ Vull o= (IVull . = C) [ Vul| 2. (39)
by Hoélder’s inequality and Poincaré’s inequality.

3. Uniform boundedness of ||Vu,||,, implies that u, is uniformly bounded in Wy? and thus has a
weaklyS converging subsequence, still denoted by u,,. We denote the limit by uq..

5. This actually cannot be guaranteed now.

6. The weak convergence is in W12, Recall that a sequence {un} in a Hilbert space H is weakly convergent with weak
limit ueo € H if (tn,v)— (Uoo,v) for any v € H.

Furthermore, using Rellich’s theorem, we see that when wu, converges to us, weakly in W12 we can find a subsequence,
still denoted wu.,, converging to ue strongly in L?, at the same time Vu, converges to Vues, weakly in L2.



4. The convexity of the functional D(u) then guarantees that

D(uoso) <liminf D(u,)= inf D(u) (40)
n o0 uewp?

which means u., is a minimizer.
5. The convexity of D(u) also guarantees the uniqueness of the minimizer.

The last few steps in general involve much technicality.” Interested readers can refer to the book by B.
Dacorogna for details.

Remark 14. This approach easily generalizes to certain nonlinear equations of the form:

—V-(%(m,u,VU))—i—g—f(x,mVu):O. (43)

where F'(z, u, p) is smooth and convex in p, with certain growth condition at infinity. The key observa-
tion is that this equation is the condition for minimizers of the functional

D(u):/Q F(z,u,Vu)de. (44)

The books by B. Dacorogna and L. C. Evans are good texts for direct methods in variational problems.

Further readings.
e J. Jost, Partial Differential Equations, Chap. 7.
e B. Dacorogna, Direct Methods in the Calculus of Variations.

e L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations.

Exercises.

Exercise 1. Consider the functional

Dp(u)z/Q |Vu|? dz, u=g on 9Q. (45)

where 1 < p<oo. What equation should its minimizer satisfy?8

7. In our case much technicality is not involved. The only thing required is some familiarity with weak convergence in
Hilbert spaces. For example, note that when w, — us weakly,

(Uny Un) — (Yoo, Uoo) = LM [(Un, — Uoo, Un — Uso)] = 0. (41)

One can even show similarly that the convergence is in fact strong.
Furthermore if uso and vo, are both minimizers of the norm, we have

Oz(uooyuoo)_(Uooyvoo):(uoo_vooyuoo_voo) (42)

since (Voo, Uoo — VUso) Mmust vanish due to the fact that v is a minimizer (local minimizer is enough).

8. The resulting operator is called the “p-Laplacian”.



