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Harmonic Functions

Since the Poisson equation

4u = f in Ω , u = g on ∂Ω ( 1 )

is linear, the uniqueness of its solutions is equivalent to the uniqueness of the Laplace equation

4u = 0 in Ω , u = 0 on ∂Ω . ( 2 )

That is, any harmonic function which vanishes on the boundary must be identically zero. However the
theory of harmonic functions, or the study of the Laplace equation, has impact far beyond just estab-
lishing uniqueness for the Poisson equation. The major properties of harmonic equation – maximum prin-
ciples, harnack inequalities, etc. – indeed guide the study of the whole class of elliptic PDEs. In this lec-
ture we will try to study in detail the properties of harmonic functions.

Harmonic functions.

Definition 1 . A C2 function satisfying 4u = 0 is called a harmonic function.

1 . Mean value formulas.

Theorem 2. If u ∈ C2 ( Ω) is harmonic , then

u( x) =
1

| Br (x ) |

∫

Br ( x )

u dx =
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS. ( 3)

for every ball Br ( x) ⊂ Ω .

Proof. First note that since ∫

Br

u dx =

∫

0

r ( ∫

∂Br

u dS

)
dr ( 4)

we only need to prove

u(x ) =
1

| ∂Br( x) |

∫

∂Br ( x )

u dS. ( 5)

For simplicity we set x = 0 and use Br to denote Br ( 0) .
We have

d

dr

[
1

| ∂Br |

∫

∂Br

u( y) dSy =
d

dr

[
1

| ∂B1 |

∫

∂B 1

u( r w ) dSw

]

=
1

| ∂B1 |

∫

∂B 1

∇u( r w ) · w dSw

=
1

| ∂B1 |

∫

∂B 1

ν · ∇u( r w ) dSw

=
1

| ∂Br |

∫

∂Br

ν · ∇u( y) dSy

=
1

| ∂Br |

∫

Br

4u(x ) dx = 0 . ( 6)

The conclusion is obtained by taking r→ 0 ( remember that u is continuous) . �

The mean value formula is a particular property for harmonic functions and cease to be true for solu-
tions to general elliptic equations, 1 but one can obtain other properties – maximum principles, harnack
inequalities, gradient estimates – which are more stable and can be extended to more complicated, even
nonlinear, equations. However, before discussing these properties, we first prove the converse of the above
theorem, which – a bit surprisingly – claims that any continuous function satisfying the mean value for-
mula is harmonic.

1 . Nevertheless one can write down mean value formulas for regions other than balls . Functions satisfy those mean value
formulas are solutions to ellipt ic equations too.



Remark 3. When u ∈ C2 , one easily reverses the argument to show the converse. What is surprising here
is that only continuity is required.

Theorem 4. If u ∈ C( Ω) satisfies

u(x ) =
1

| ∂Br( x) |

∫

∂Br ( x )

u dS ( 7)

for every x ∈ Ω and bal l Br (x ) ⊂ Ω , then u is C∞ and is harmonic .

Proof. We only need to show u ∈ C∞ and the rest of the proof is trivial. To do this, we observe that for
any radially symmetric function φ = φ( r) supported in Bε with

∫
Bε

φ = 1 , we have

u ∗ φ = u ( 8)

for all x ∈ Ω such that Br (x ) ⊂ Ω .
For simplicity we compute at x = 0 :

( u ∗ φ ) ( 0) =

∫

Bε

u( y) φ ( − y) dy

=

∫

Bε

u( y) φ ( y) dy

=

∫

0

ε [ ∫

∂Br

u( z ) φ ( z ) dSz

]
dr

=

∫

0

ε [ ∫

∂Br

u( z ) dSz

]
φ( r) dr

=

∫

0

ε

u( 0) | ∂Br | φ( r) dr

= u( 0)

∫

Bε

φ ( r) dx = u( 0) . ( 9)

Now take φ = φ ( r) ∈ C0
∞ (B1 ) and set φε =

1

εn
φ
( x
ε

)
. We see that for any Ω ′ ⊂ ⊂ Ω , there is ε > 0 such that

u = u ∗ φε ∈ C∞ on Ω ′ ( 1 0)

Thus ends the proof. �

Remark 5. Inspection of the above proof reveals that the same conclusion holds when u is only assumed
to be locally integrable.

The same method can be used to prove the following Weyl’ s lemma:

Lemma. (Weyl’ s lemma) Let u : Ω � R be measurab le and local ly integrab le in Ω . Suppose that for all
ϕ ∈ C0

∞ ( Ω) , ∫

Ω

u(x ) 4ϕ (x ) dx = 0 . ( 1 1 )

then u is harmonic and, in particular, smooth. (In other words, the lemma claims that any locally inte -
grab le 2 distributional so lution of the Laplace equation is smooth)

Proof. We sketch the key ideas.

1 . Take a mollifier ψ ( x) , let ψε (x ) ≡ ε− n ψ (x/ε) . For any ϕ ∈ C0
∞ ( Ω) , ψε ∗ ϕ ∈ C0

∞ ( Ω) for ε small
enough. Using it as the test function, we obtain

4 ( u ∗ ψε ) = 0 . ( 1 2 )

in the classical sense.

2. What conc lusion can we make without loca l integrab ility?



2 . As a consequence,

(u ∗ ψε ) (x ) =
1

| Br |

∫

Br ( x )

u ∗ ψε dx ( 1 3)

for r small enough. Now let ε ↘ 0 , since u ∈ L1 , the LHS → u in L1 and therefore one can find a
subsequence → u almost everywhere, while the RHS converges to

∫
u dx . So u satisfies the mean

value property. �

From the above results we see that in particular every harmonic function is C∞ . In fact we can show that
they are actually analytic. These properties cease to look mysterious when we realize that after identi-
fying R2 with C , any harmonic function can be seen as the real ( or imaginary) part of an analytic func-
tion. For example, Theorem 4 becomes natural now since any continuous complex function satisfying the
mean value property must be analytic.

2. Maximum principles.

Theorem 6. ( Strong maximum principle) Suppose u ∈ C2 ( Ω) ∩ C ( Ω) is harmonic in Ω .

a ) Then

max
Ω̄

u = max
∂Ω

u. ( 1 4)

b ) If Ω is connected and there exists a point x0 ∈ Ω such that

u( x0 ) = max
Ω̄

u , ( 1 5)

then u is constant within Ω .

The claims remain true when max is replaced by min .

Proof.

a) This follows from b) .

b) Assume there is x0 ∈ Ω such that

u( x0 ) = max
Ω̄

u , ( 1 6)

we try to show that u must be constant in the connect component containing x0 .
We define the subset

Ω ′ ≡
{
x ∈ Ω

�
u( x) = u( x0 ) = max

Ω̄
u
}
. ( 1 7)

Then by continuity of u , Ω ′ is closed ( relative to Ω ) .
On the other hand, the mean value formula implies that Ω ′ is also open ( relative to Ω ) .
Now the connectedness of Ω forces Ω ′ = Ω . Thus ends the proof. �

Remark 7. From the maximum principle we immediately obtain the uniqueness of the solutions for the
Dirichlet problem of the Poisson equation.

Using the maximum principle one can obtain local derivative estimates.

Theorem 8. (Derivative estimates) Assume u is harmonic in Ω . Then

| ∂αu(x0 ) | 6 Ck
rn+ k

‖ u ‖ L 1 (Br ( x 0 ) )
3 ( 1 8)

for each ball Br ( x0 ) ⊂ Ω and each multi- index α of order | α | = k (k = 0 , 1 , � ) . Here

C0 =
1

α (n)
, Ck =

(
2n+ 1 n k

) k

α (n)
. ( 1 9)

3 . ‖ u ‖ L 1 (B r( x 0 )
≡
∫

Br ( x 0 )
| u | dx.



Proof.

− k = 0 . Recall the mean value formula

u( x0 ) =
1

| Br |

∫

Br ( x 0 )

u( y) dy =
1

rn α(n)

∫

Br ( x 0 )

u( y) dy 6 1 /α (n)

rn
‖ u ‖ L 1 (Br ( x 0 ) )

. ( 20)

− k = 1 . First note that ∂x iu is still harmonic. Therefore we can apply the mean value formula on
Br/ 2 (x0 ) :

| ∂x iu(x0 ) | =

∣∣∣∣∣
1∣∣ Br/ 2

∣∣
∫

Br / 2 ( x 0 )

∂x iu( y) dy

∣∣∣∣∣

=

∣∣∣∣∣
1∣∣ Br/ 2

∣∣
∫

∂Br / 2 ( x 0 )

ni u( y) dy

∣∣∣∣∣

6 1∣∣ Br/ 2

∣∣
∣∣ ∂Br/ 2

∣∣ sup
∂Br / 2 ( x 0 )

| u( y) |

6 2 n

r
sup

∂Br / 2 ( x 0 )

| u( y) | . ( 21 )

Now we apply the k = 0 result to | u( y) | :

| u( y) | 6 1 /α (n)

rn

∫

Br / 2 ( y )

| u | 6 1 /α(n)

( r/ 2) n

∫

Br ( x 0 )

| u | = 2n/α (n)

rn
‖ u ‖ L 1 (Br ( x 0 ) )

. ( 22 )

Substituting this back, we obtain

| ∂x iu( x0 ) | 6 2 n

r
sup

∂Br / 2 ( x 0 )

| u( y) |

6 2n+ 1 n

α(n)

1

rn+ 1 ‖ u ‖ L 1 (Br ( x 0 ) )
. ( 23)

− Induction. We assume the case k − 1 has already been established.
Let | α | = k . Then ∂αu = ∂x i

(
∂βu

)
where | β | = k − 1 for some xi . Now we can bound ∂αu( x0 ) by

∂βu( y) for y ∈ ∂Br/ k (x0 ) , and then use the k = 1 case on balls of radius k − 1

k
r . The details are left

as an exercise. �

Remark 9. From the above derivative estimates it is easy to show that if u is harmonic in Ω then it is in
fact not only C∞ by analytic. See pp. 31 –32 in L. C. Evans Partial Differential Equations for a
proof.

3. Harnack inequalities.
An important property of elliptic equations is the Harnack inequality. More specifically, if u > 0 is

harmonic in Ω then its osciallation inside Ω is controlled.

Theorem 10. (Harnack’ s inequality) For any connected open set Ω ′ ⊂ ⊂ Ω4 , there exists a positive
constant C, depending only on Ω ′ , such that

sup
Ω ′

u 6 C inf
Ω ′

u ( 24)

for al l nonnegative function u that is harmonic in Ω .

Proof. Since Ω ′ ⊂ ⊂ Ω , dist
(
Ω̄ ′ , ∂Ω

)
> 0 . Let r =

1

4
dist

(
Ω̄ ′ , ∂Ω

)
. Now choose x , y ∈ Ω ′ , | x − y | 6 r . Then

u(x ) =
1

| B2 r |

∫

B 2 r ( x )

u( z ) dz > 1

| B2 r |

∫

Br ( y)

u( z ) dz =
1

2n
u( y) . 5 ( 25)

4 . That is, the c lo sure Ω ′ is compact and conta ined in Ω .

5 . Note that we have used the assumption u > 0 in the inequality.



In other words, for any ball B of radius r/ 2 , we have

2n u( y) > u(x ) > 1

2n
u( y) , ∀x , y ∈ B ∩ Ω ′ . ( 26)

Since Ω ′ ⊂ ⊂ Ω is connect, Ω̄ ′ can be covered by a chain of finitely many balls Bi ( i = 1 , 2 , � , k ) , each of
radius r/ 2 , and Bi ∩ Bi− 1 � φ . We see that the constant in the theorem is just 2nk . �

4. Poisson representation formula.
Recalling the form of the Green’ s function for the Laplacian on the ball BR , we easily obtain the fol-

lowing Poisson representation formula,

u( x) ≡ R2 − | x | 2
| B1 | R

∫

∂BR

u( y)

| x − y | n dS , | x | < R, ( 27)

for any harmonic function u . Therefore

u( x) ≡ R2 − | x | 2
| B1 | R

∫

∂BR

ϕ ( y)

| x − y | n dS , | x | < R,

should solve the Laplace equation

4u = 0 in BR ( 28)
u = ϕ on ∂BR . ( 29)

where ϕ ∈ C (∂BR ) .
We only need to show that u is continuous up to the boundary, that is

u( xn) → ϕ ( x∞ ) ( 30)

for any x∞ ∈ ∂BR and xn→ x∞ from inside.
To see this, first note that since u ≡ 1 is harmonic, we have

∫

∂BR

R2 − | x | 2
| B1 | R

1

| x − y | n dSy = 1 . ( 31 )

From now on we denote

K(x , y) =
R2 − | x | 2
| B1 | R

1

| x − y | n ( 32 )

Note that K > 0 and satisfies

lim
| x ′ | < 1 , x ′→ x 0

∫

| y− x 0 | > δ
K(x ′ , y) dy→ 0 ( 33)

for any fixed δ .
All we need to do is to show that

lim
x→ x 0∈ ∂BR

∫

∂BR

K( x , y) ϕ ( y) dy = ϕ ( x) . ( 34)

Since
∫
∂BR

K(x , y) dSy = 1 , we have
∫

∂BR

K( x , y) ϕ ( y) dy − ϕ (x0 ) =

∫

∂BR

K( x , y) [ ϕ ( y) − ϕ ( x0 ) ] dy. ( 35)

For any ε > 0 , there is δ > 0 such that

| ϕ ( x) − ϕ (x0 ) | < ε

2
whenever | x − x0 | < 2 δ , x ∈ ∂BR ( 36)

Take δ ′ > 0 so small that
∫

| y− x 0 | > 2 δ

K(x ′ , y) dy <
ε

2 M
whenever | x ′ − x0 | < δ ′ ( 37)

where M = sup∂BR | ϕ | .



We estimate

| u( x ′) − ϕ ( x0 ) | =

∣∣∣∣
∫

∂BR

K( x ′ , y) [ ϕ ( y) − ϕ ( x0 ) ] dy

∣∣∣∣

6
∣∣∣∣∣

∫

| y− x 0 | < 2 δ

K(x ′ , y) [ ϕ ( y) − ϕ (x0 ) ] dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

| y− x 0 | > 2 δ

K(x ′ , y) [ ϕ ( y) − ϕ (x0 ) ] dy

∣∣∣∣∣

6 ε

2
+ 2 M

∫

| y− x 0 | > 2 δ

K( x ′ , y) dy < ε. ( 38)

Note that the above argument gives the existence of the Laplace equation on a ball:

4u = 0 , x ∈ BR , u = ϕ , x ∈ ∂BR ( 39)

for ϕ ∈ C(∂BR ) .

5. Subharmonic and superharmonic functions.
To obtain estimates of the Poisson equation ( and more complicated equations)

4u = f ( 40)

it is advantageous to extend maximum principles to the case where 4u is not identically 0 .
A simple adaptation of the proof for the Laplace equation case gives

Lemma 1 1 . If u ∈ C2 ( Ω) satisfies 4u > 0( 6 0) , then

u( x) 6 ( > )
1

| Br( x) |

∫

Br ( x )

u dx and also
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS. ( 41 )

for every ball Br ( x) ⊂ Ω .

In light of this lemma, we would like to call u(x ) subharmonic when 4u > 0 and superharmonic when
4u 6 0 . Note that u is harmonic exactly when u is both subharmonic and superharmonic. And we have

− If u is subharmonic, then supΩ u 6 sup∂Ω u , and if u( x0 ) = sup∂Ω u for some x0 ∈ Ω , then u is con-
stant.

− If u is superharmonic, then infΩ u > inf∂Ω u , and if u(x0 ) = inf∂Ω u for some x0 ∈ Ω , then u is con-
stant.

One way to remember these results is to draw a picture of the 1 D case. Note that u is subharmonic if and
only if − u is superharmonic. Thus in the following we will only discuss subharmonic functions.

However in practice it is usually advantageous to be able to draw similar conclusions for function with
less regularity. Motivated by the harmonic case, we can use the following definitions.

Definition 1 2. ( Subharmonic and superharmonic functions)
An upper(lower) semicontinuous 6 function v : Ω � [ − ∞ , ∞ ) , not identical ly − ∞ , is subhar-

monic(superharmonic) if for every bal l Br (x0 ) ⊂ Ω ,

v (x0 ) 6 ( > )
1

| Br |

∫

Br ( x 0 )

v (x ) dx , ( 42 )

it can also be defined by

v (x0 ) 6 ( > )
1

| ∂Br |

∫

∂Br ( x 0 )

v (x ) dS. ( 43)

From this definition the maximum principles immediately follow.

6. An upper(lower) semicontinuous function is the limit of a mono tonica l ly decrea sing(increa sing) se quence of contin-
uous functions. In particula r, e ve ry continuous function is upper(lower) semicontinuous.



One can also have the following equivalent characterization, which justifies the usage of the adjectives
subharmonic ( superharmonic) .

Lemma 13. Let v : Ω � [ − ∞ , ∞ ) be upper semicontinuous, but not identically − ∞ . Then v is subhar-
monic(superharmonic) if and only if for every Ω ′ ⊂ ⊂ Ω and every C0

(
Ω̄ ′
)
harmonic function u : Ω ′ � R

with v 6 ( > ) u on ∂Ω ′ , we have

v 6 ( > )u in Ω ′ . ( 44)

Proof. We discuss the two directions.

− “If”.
The basic idea is the following. For any ball Br (x0 ) , we can take u harmonic in Br and u = v on

∂Br . Then obviously we have

v ( x0 ) 6 u( x0 ) =
1

| ∂Br |

∫

∂Br ( x 0 )

u(x ) dS =
1

| ∂Br |

∫

∂Br ( x 0 )

v ( x) dS. ( 45)

Integrating w. r. t . r gives

v (x0 ) 6
1

| Br |

∫

Br ( x 0 )

v ( x) dx. ( 46)

This argument doesn’ t work per se because we do not assume v to be continuous and therefore the
existence of the harmonic u is not guaranteed ( recall that the Poisson representation formula
requires the boundary value to be continuous) .

The way to overcome this technical difficulty is to take a monotonically decreasing sequence of
continuous function vn → v where the convergence is pointwise. For each vn a harmonic un exists
with un = vn > v on ∂Br (x0 ) . Then we have

v (x0 ) 6 un(x0 ) =
1

| ∂Br |

∫

∂Br ( x 0 )

un(x ) dS =
1

| ∂Br |

∫

∂Br ( x 0 )

vn(x ) dS. ( 47)

Now since vn is decreasing, there is a finite uniform upper bound max∂Br ( x 0 ) v1 (x ) , application of
Lebesgue’ s monotone convergence theorem to − vn gives

1

| ∂Br |

∫

∂Br ( x 0 )

v (x ) dS = lim
n↗∞

1

| ∂Br |

∫

∂Br ( x 0 )

vn(x ) dS. ( 48)

− “Only if”. We know that any subharmonic v satisfies the maximum principle:

sup
Ω

v 6 sup
∂Ω

v . ( 49)

Now for any v subharmonic, and u harmonic, v − u is again subharmonic. If u = v on ∂Ω ′ , v − u
has 0 boundary value. This implies v 6 u in Ω ′ . �

Example 1 4. Examples of subharmonic functions.

1 . Let n > 2 . We compute

4 | x | k = (n k + k ( k − 2) ) | x | k − 2
. ( 50)

Thus | x | k is subharmonic when k > 2 − n . Recall that it is harmonic when k = 2 − n ( except at 0 ) .

2 . Let u : Ω � R be harmonic and positive, β > 1 , then

4
(
uβ
)

=
∑

1

n (
β uβ− 1 ux ix i + β ( β − 1 ) uβ− 2 ux i ux i

)
= β ( β − 1 ) uβ− 2

∑

1

n

ux i ux i . ( 51 )

Thus uβ is subharmonic if u > 0 and β > 1 .

3 . Let u : Ω � R be harmonic and positive. Then

4 ( log u) =
∑

1

n ( ux ix i
u
− ux i ux i

u2

)
= −

∑

1

n
ux i ux i
u2

6 0 . ( 52 )



Thus log u is superharmonic, or equivalently − log u is subharmonic.

4. Let f be a function which can be approximated locally uniformly by fn which are C2 and convex
( fn′′ > 0 ) , then f ◦ u is subharmonic.

Exercises.

Exercise 1 . Prove the | α | = k case of the derivative estimates.

Exercise 2 . Prove the following L iouville theorem:

Theorem. ( L iouvil le) Le t u : Rd � R be harmonic and bounded. Then u is constant.

Hint: Let x , y be any two points . Represent u(x ) , u( y) using mean value formula over balls of radius R . Compute the
difference u( x ) − u( y) and then let R↗∞ .

Exercise 3 . Prove the following Harnack convergence theorem.

Theorem. Le t un : Ω � R be a monotonica l ly increasing se quence of harmonic functions. If there exists y ∈ Ω for which
the se quence {un( y) } is bounded , then un converge s on any subdoma in Ω ′ ⊂ ⊂ Ω uniformly towards a harmonic func-
tion .

Hint: Use Harnack’ s inequality.


