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Schauder Theory

Intuitively, the solution u to the Poisson equation

4u = f ( 1 )

should have better regularity than the right hand side f . In particular one expects u to be “twice more
differentiable” than f . The validity of this conjecture depends on the function spaces we are looking at.

Note. “Schauder Theory” in fact denotes the similar results for the general linear elliptic PDE
∑

ai j(x )
∂u

∂xi ∂x j
+
∑

bi( x)
∂u

∂x i
+ c( x) u( x) = 0 . ( 2 )

Nevertheless we use it ( instead of “C2 , α estimates”) as the title of this lecture to make it easy to display
on the web.

1 . Counter-examples.
The most “natural” conjecture one would make is f ∈ C( Ω)

�
u ∈ C2 ( Ω) . Anyway, it is indeed true in

1D. However it cease to be true when the dimension is bigger than 1 .

Example 1 . ( f ∈ L∞ but u
�
C1 , 1 ) .

u( x1 , x2 ) = | x1 | | x2 | log( | x1 | + | x2 | ) . ( 3)

We compute ( in x1 , x2 > 0 )

∂2u

∂x1
2 =

∂

∂x1

[
x2 log(x1 + x2 ) +

x1 x2

x1 + x2

]
=

2 x2

x1 + x2
− x1 x2

(x1 + x2 )
2 ; ( 4)

∂2u

∂x2
2 =

2 x1

x1 + x2
− x1 x2

(x1 + x2 )
2 . ( 5)

Thus

4u = 2 − 2 x1 x2

( x1 + x2 )
2 ( 6)

and the RHS is a bounded function.
However, we compute

∂2u

∂x1 ∂x2
= log(x1 + x2 ) + 1 − x1 x2

(x1 + x2 )
2

�
L∞ . ( 7)

Example 2. ( f continuous but u
�
C1 , 1 ) .

4u = f (x ) ≡ x2
2 − x1

2

2 | x | 2

[
n + 2

( − log | x | ) 1 / 2
+

1

2 ( − log | x | ) 3/ 2

]
, x ∈ BR ⊂ Rn . ( 8)

f ( x) is continuous after setting f ( 0) = 0 .
However, the solution

u(x ) =
(
x1

2 − x2
2
)

( − log | x | ) 1 / 2 ( 9)

has
∂2u

∂x1
2 � ∞ x→ 0 . ( 1 0)

Therefore u
�
C1 , 1 . 1

1 . One can show that there is no classical solution to this problem. Assume otherwise a classical solut ion v exists , then
the difference u − v is a bounded harmonic function in BR \{ 0} . In the next lecture we will see that such functions can be
extended as a harmonic function in the whole BR which means ∇2u must be bounded, a contradict ion.



2. Cα regularity.
The right space to work on are the Hölder spaces.

Definition 3. (Hölder continuity) Let f : Ω � R , x0 ∈ Ω , 0 < α < 1 . The function f is called Hölder
continuous at x0 with exponent α if

sup
x ∈ Ω

| f (x ) − f (x0 ) |
| x − x0 | α

< ∞ . ( 1 1 )

f is cal led Hölder continuous in Ω if it is Hölder continuous at each x0 ∈ Ω (with the same? exponent α),
denoted f ∈ Cα ( Ω) .

When α = 1 , f is cal led Lipschitz continuous at x0 , denoted f ∈ Lip( Ω) or f ∈ C0 , 1 ( Ω) .
Ck , α

(
Ω̄
)
contains f ∈ Ck

(
Ω̄
)
whose kth derivatives are uniformly Hölder continuous with exponent α

over Ω̄ , that is

sup
x , y∈ Ω̄

| f (x ) − f ( y) |
| x − y | α < ∞ . ( 1 2 )

Ck , α ( Ω) contains f ∈ Ck ( Ω) whose kth derivatives are uniformly Hölder continuous with exponent α in
every compact subset of Ω .

Example 4. The functions f (x ) = | x | α , 0 < α < 1 , is Hölder continuous with exponent α at x = 0 . It is
Lipschitz continuous when α = 1 .

Remark 5. When k = 0 , we usually use Cα for C0 , α since there is no ambiguity for 0 < α < 1 .

We can define the seminorm

| f |
Cα
(
Ω̄
) ≡ sup

x , y∈ Ω

| f (x ) − f ( y) |
| x − y | α , ( 1 3)

and the norms

‖ f ‖
Cα
(
Ω̄
) = ‖ f ‖ C 0 ( Ω )

+ | f |
Cα
(
Ω̄
) , ( 1 4)

‖ f ‖
C k , α

(
Ω̄
) =

∑

| α | 6 k
‖ ∂αf ‖ C 0 ( Ω )

+
∑

| α | = k
| ∂αf |

Cα
(
Ω̄
) . ( 1 5)

where

‖ f ‖
C 0
(
Ω̄
) = sup

x ∈ Ω
| f | . ( 1 6)

The following property is important. In short, Cα is an algebra.

Lemma 6. If f1 , f2 ∈ Cα ( Ω) , then f1 f2 ∈ Cα (G ) , and

| f1 f2 | Cα 6
(
sup

Ω
| f1 |

)
| f2 | Cα +

(
sup

Ω
| f2 |

)
| f1 | Cα . ( 1 7)

Proof. Left as exercise. �

Theorem 7. Let Ω ⊂ Rd be open and bounded,

u(x ) ≡
∫

Ω

Φ (x − y) f ( y) dy , ( 1 8)

where Φ is the fundamental solution. Then

a ) If f ∈ C0
α
(
Ω̄
)
, 0 < α < 1 , then u ∈ C2 , α

(
Ω̄
)
, and

‖ u ‖
C 2 , α

(
Ω̄
) 6 c ‖ f ‖

Cα
(
Ω̄
) . ( 1 9)

b ) If f ∈ L∞ ( Ω) (α = 0 case), then u ∈ C1 , α
(

Ω̄
)
for any 0 < α < 1 , and

‖ u ‖
C 1 , α

(
Ω̄
) 6 c ‖ f ‖

L∞
(
Ω̄
) . ( 20)



c ) If f ∈ Lip
(
Ω̄
)
(α = 1 case) with support contained in Ω̄ , then u ∈ C2 , α

(
Ω̄
)
for any 0 < α < 1 , and

‖ u ‖
C 2 , α

(
Ω̄
) 6 c ‖ f ‖ L ip( Ω̄ ) . ( 21 )

Proof.

a) Recall that Φ( x − y) = C log | x − y | for n = 2 and Φ( x − y) = C
1

| x − y | n − 2 . for n > 3 .

1 . We first show u ∈ C1 .
Formally differentiating we obtain

∂x iu =

∫

Ω
(∂x iΓ( x , y) ) f ( y) dy = C

∫

Ω

x i − yi
| x − y | n f ( y) dy. ( 22 )

It is easy to check that the integrand is integrable. Therefore by the theorem regarding dif-
ferentiating with respect to a parameter for Lebesgue integrals, we see that the formal rela-
tion

∂x iu = C

∫

Ω

x i − yi
| x − y | n f ( y) dy ( 23)

indeed holds.

2 . Next we show u ∈ C2 , α . In the following we will omit the constant factor C . In this step we
do some preparations.

Again formally differentiating, we obtain

∂x ix ju =

∫ (
δi j

| x − y | n −
n ( xi − yi) ( xj − yj)
| x − y | n+ 2

)
f ( y) dy. ( 24)

But this time the integrand is not automatically integrable and therefore this equality is
dubious. To overcome this difficulty, we first work in the weak sense.

By extending f outside Ω to be 0 ( resulting in a distribution with compact support) , we
can write

∂x iu =
x i
| x | n ∗ f ( 25)

in the sense of distributions. Thus we have

∂x ix ju =

[
∂x j

(
xi
| x | n

) ]
∗ f ( 26)

in the sense of distributions. We compute the distributional derivative ∂x j
(

x i

| x | n
)
now.

Take any φ ∈ C0
∞ (Rn) , we know

[
∂x j

(
xi
| x | n

) ]
( φ) = −

∫
x i
| x | n

(
∂x jφ

)
(x ) dx = − lim

ε↘ 0

∫

Rn \Bε

xi
| x | n

(
∂x jφ

)
dx. ( 27)

Now integrate by parts, we have

−
∫

Rn \Bε

x i
| x | n

(
∂x jφ

)
dx = −

∫

∂Bε

φ (x )
xi
| x | n

(
− xj
| x |

)
+

∫

Rn \Bε
Si j(x ) φ (x ) dx

=

∫

| x | = ε
φ (x )

x i xj
εn+ 1 +

∫

Rn \Bε
Si j(x ) φ (x ) dx. ( 28)

where

Si j( x) =
δi j

| x − y | n −
n ( xi − yi) (x j − yj)
| x − y | n+ 2 ( 29)

is the formal derivative. For the boundary term, we write
∫

| x | = ε
φ (x )

x i x j
εn+ 1 = φ( 0)

∫

| x | = ε

x i x j
εn+ 1 +

∫

| x | = ε
[ φ( x) − φ( 0) ]

x i xj
εn+ 1 . ( 30)



Note that since φ ∈ C0
∞ , φ (x ) − φ ( 0) = O ( | x | ) = O ( ε) which makes the second term an O ( ε)

quantity. For the first term, a symmetry argument shows that the integral vanishes when
i

�
j . When i = j , we use symmetry and the fact that

∫

| x | = ε

∑ xi xi

| x | n+ 1 =

∫

| x | = ε

1

εn− 1 = ωn− 1 , ( 31 )

where ωn− 1 is the surface area of the n − 1 dimensional unit sphere, to conclude that the
limit is c φ ( 0) for some constant c .

Therefore we have shown that
[
∂x j

(
xi
| x | n

) ]
( φ) = lim

ε↘ 0

∫

Rn \Bε
Si j( x ) φ( x ) dx + c δ ( 32 )

As a consequence, we have

∂x ix ju(x ) = lim
ε↘ 0

∫

Ω\Bε
Si j(x − y) f ( y) dy + c f ( x) . ( 33)

We now show directly that the second derivative ∂x ix ju is Hölder continuous with power α .
S ince f (x ) ∈ Cα , we only need to show that

lim
ε↘ 0

[ ∫

Ω\Bε ( x 1 )

Si j( x1 − y) f ( y) dy −
∫

Ω \Bε ( x 2 )

Si j(x2 − y) f ( y) dy

]
| x1 − x2 | − α < ∞ . ( 34)

uniformly for x1 , x2 ∈ Ω .

3 . ∂x ix ju ∈ Cα .
Inspection of Si j reveals that for any 0 < R1 < R2 :

∫

R1 6 | y | 6 R2

Si j( x − y) dy = 0 . ( 35)

To make things simple, we extend f to be 0 outside Ω . The resulting function is in C0
α (Rn)

2 . We have
∫

Rn \B ε
Si j(x − y) f ( y) dy =

∫

Rn \B ε
Si j(x − y) [ f ( y) − f (x ) ] dy. ( 36)

Note that since f ∈ Cα , the integrand is integrable now, which means u ∈ C2 has been
proved.

To show u ∈ C2 , α we need more refined analysis of the integral. First note that in writing
the quantity as

lim
ε↘ 0

∫

Rn \B ε
Si j( x − y) [ f ( y) − f (x ) ] dy ( 37)

the singularity has been removed and we can take the limit and write

∂x ix ju( x) =

∫

Rn
Si j(x − y) [ f ( y) − f ( x) ] dy. ( 38)

For any x1 , x2 ∈ Ω , setting δ = 2 | x1 − x2 | , we have

∂x ix ju(x1 ) − ∂x ix ju( x2 ) =

∫

Rn
Si j( x1 − y) [ f ( y) − f ( x1 ) ] − Si j(x2 − y) [ f ( y) − f (x2 ) ]

=

∫

Bδ ( x 1 )

+

∫

Rn \Bδ ( x 1 )

≡ A + B. ( 39)

2 . Let f̃ be the extended function. Then one notices that
∣∣∣ f̃ ( x ) − f̃ ( y)

∣∣∣ = | f ( x) − f ( y) | when x , y ∈ Ω , vanishes when x ,

y � Ω , and equals | f (x ) − f ( y ′ ) | when x ∈ Ω and y � Ω , where y ′ is the intersect ion of ∂Ω and the line connecting x , y .



For A , we bound | f ( y) − f (x1 ) | 6 ‖ f ‖ Cα | y − x1 | α and | f ( y) − f (x2 ) | 6 ‖ f ‖ Cα | y − x2 | α , and
get

| A | 6 C ‖ f ‖ Cα δα = C ‖ f ‖ Cα | x1 − x2 | α . ( 40)

For B , we have

B =

∫

Rn \Bδ ( x 1 )

Si j(x1 − y) [ f ( y) − f (x1 ) ] − Si j(x2 − y) [ f ( y) − f (x2 ) ]

=

∫

Rn \Bδ ( x 1 )

Si j(x1 − y) [ f (x2 ) − f (x1 ) ] dy

+

∫

Rn \Bδ ( x 1 )

[Si j(x1 − y) − Si j(x2 − y) ] [ f ( y) − f (x2 ) ] dy

≡ B1 + B2 . ( 41 )

It is easy to see that B1 = 0 . For B2 , we estimate3

| Si j(x1 − y) − Si j(x2 − y) | 6 | ∇Si j( x3 − y) | | x1 − x2 | 6 C | x1 − x2 |
| x3 − y | n+ 1 ( 42 )

for some x3 lying on the line segment connecting x1 , x2 . We have

| B2 | 6 C ‖ f ‖ Cα
∫

Rn \Bδ ( x 1 )

| x1 − x2 |
| x3 − y | n+ 1 | y − x2 | α

6 C ‖ f ‖ Cα | x1 − x2 |
∫

Rn \Bδ ( x 1 )

| x1 − y | α − (n+ 1 ) dy

= C ‖ f ‖ Cα | x1 − x2 | | x1 − x2 | α − 1

= C ‖ f ‖ Cα | x1 − x2 | α . ( 43)

where we have used the fact that | xi − y | are all comparable ( i = 1 , 2 , 3 ) for y
�
Bδ (x1 ) .

b) We prove the stronger statement ∂x iu is Log-Lipschitz, that is

| ∂x iu( x1 ) − ∂x iu(x2 ) | 6 C sup | f | | x1 − x2 | log
(
| x1 − x2 | − 1

)
. ( 44)

It is easy to get

| ∂x iu(x1 ) − ∂x iu(x2 ) | 6 sup
Ω
| f |

∫

Ω

∣∣∣∣
(x1 − y) i
| x1 − y | n

− (x2 − y) i
| x2 − y | n

∣∣∣∣ dy. ( 45)

We extend f by 0 and break the integral to
∫
Bδ ( x 1 )

+
∫

Rn \Bδ ( x 1 )
with δ = 2 | x1 − x2 | . For the first

term we obtain a bound C supΩ | f | | x1 − x2 | , for the second we use
∣∣∣∣
(x1 − y) i
| x1 − y | n

− (x2 − y) i
| x2 − y | n

∣∣∣∣ 6 C
| x1 − x2 |
| x3 − y | n

( 46)

with a uniform C . Now note that for R big enough,
∫

Rn \Bδ =
∫
BR \Bδ ( x 1 )

6
∫
BR \Bδ / 2 ( x 3 )

. The

integration can be carried out explicitly and yields the bound

C | x1 − x2 | ( logR − log | x1 − x2 | ) . ( 47)

Thus ends the proof ( the details are left as exercise) .

c) This part is the same as b) . Omitted. �

Remark 8. The techniques involved in the above proof is standard in the theory of singular integrals and
are applied extensively in equations arising from fluid mechanics, mathematical biology, etc.

3 . Note that the intermediate value theorem gives x3 depending on y. But when we are working outside Bδ (x 1 ) , | ξ − y |
are all comparable for any ξ between x1 and x2 .



Remark 9. One may notice that when f ∈ L∞ , one cannot reach ∂x iu ∈ Lip ( that is ∂x ix ju ∈ L∞ ) . The
reason is that the operator ∂x i x j ( − 4 )

− 1 does not map L∞ into L∞ . Details can be found in any text-
book in real harmonic analysis.

When f does not have compact support, we cannot obtain uniform bounds for u over the whole Ω , but
we can obtain estimates on any smaller set Ω 0 ⊂ ⊂ Ω . 4

Theorem 10. Let Ω ⊂ Rn be open and bounded, and Ω0 b Ω . Let u so lve 4u = f in Ω .

a ) If f ∈ C0 ( Ω) , then u ∈ C1 , α ( Ω) for any α ∈ ( 0 , 1 ) , and

‖ u ‖
C 1 , α ( Ω 0 )

6 c
(
‖ f ‖ C 0 ( Ω )

+ ‖ u ‖ L 2 ( Ω )

)
. ( 48)

b ) If f ∈ Cα ( Ω) for 0 < α < 1 , then u ∈ C2 , α ( Ω) , and

‖ u ‖
C 2 , α ( Ω 0 )

6 c
(
‖ f ‖ Cα ( Ω )

+ ‖ u ‖ L 2 ( Ω )

)
. ( 49)

Here

‖ u ‖ L 2 ( Ω )
=

( ∫

Ω

u2

) 1 / 2

. ( 50)

Proof. We just give an outline of the proof here. Set η be a cut-off function and consider φ = η u . We
have

4 φ = F ≡ η f + 2 ∇u · ∇η + u 4 η ( 51 )

where the RHS has compact support.
This gives

‖ F ‖ L∞ 6 c( η) ‖ f ‖ L∞ + C( η) ‖ u ‖ C 1

]
( 52 )

and

‖ F ‖ Cα 6 c( η ) ‖ f ‖ Cα + C( η) ‖ u ‖
C 1 , α

]
. ( 53)

Next we show that for any ε > 0 , there is N( ε) > 0 such that

‖ u ‖ C 1 6 N( ε) ‖ u ‖ L 2 + ε ‖ u ‖
C 1 , α ( 54)

and

‖ u ‖
C 1 , α 6 N( ε) ‖ u ‖ L 2 + ε ‖ u ‖

C 2 , α . ( 55)

This is shown via reductio ad absurdum using the Arzela-Ascoli theorem.
Thus we obtain

‖ u ‖
C 1 , α ( Ω 0 )

6 C( η)
[
ε ‖ u ‖

C 1 , α ( Ω )
+ ‖ u ‖ L 2 ( Ω )

]
+ c( η ) N( ε) ‖ f ‖ C 0 ( Ω )

( 56)

( and a similar estimate for ‖ u ‖
C 2 , α ( Ω 0 )

) with the problem that the C1 , α norm on the LHS is on Ω0 while

that on the RHS is on a bigger set Ω and therefore cannot be absorbed into the LHS.
This difficulty is overcome by the following technical trick. Consider the case when Ω0 = Br , Ω = BR2 ,

we have

‖ u ‖
C 1 , α (Br )

6 C ( η )
[
ε ‖ u ‖

C 1 , α
(
BR2

) + ‖ u ‖
L 2
(
BR2

)
]

+ c( η ) N( ε) ‖ f ‖
C 0
(
BR2

) . ( 57)

Now set5

A≡ sup
06 r6 R

(R − r) 3 ‖ u ‖
C 1 , α (Br )

. ( 58)

for some R > R2 .

4. Meaning: The closure Ω0 is a compact subset of Ω .

5 . Here it seems we need to assume the finiteness of this quantity.



Now choose R1 such that

A1 6 2 (R − R1 )
3 ‖ u ‖

C 1 , α
(
BR1

) , ( 59)

This gives

A1 6 2 (R − R1 )
3 ‖ u ‖

C 1 , α
(
BR1

)

6 2 (R − R1 )
3
[
ε C( η) ‖ u ‖

C 1 , α
(
BR2

) + C( η) ‖ u ‖
L 2
(
BR2

)
]

+ 2 (R − R1 )
3 c( η ) N( ε) ‖ f ‖

C 0
(
BR2

) . ( 60)

Now observe that C( η) ∼ 1

(R2 − R1 ) 2 and c( η ) ∼ 1 , we have, using the definition of A1 ,

A1 6 C
(R − R1 )

3

(R − R2 )
3

ε

(R1 − R2 )
2 A1 + C ′N( ε)

(R − R1 )
3

(R2 − R1 )
2 ‖ u ‖ L 2

(
BR2

) + C ′ ′ (R − R1 )
3 ‖ f ‖

C 0
(
BR2

) . ( 61 )

Now for fixed R, R1 , one can choose R2 and ε appropriately so that the coefficient of A1 on the RHS is
less than 1 . Thus we obtain the desired estimate for

‖ u ‖
C 1 , α (Br )

6 1

(R − r) 3
A1 . ( 62 )

Now we can cover Ω 0 by balls Br , and set R = r + d where d = dist( Ω0 , ∂Ω) , and finish the proof. �

Corollary 1 1 . If u so lves 4u = f with f ∈ Ck , α ( Ω) for k ∈ N and 0 < α < 1 , then u ∈ Ck+ 2 , α ( Ω0 ) for any
Ω0 ⊂ ⊂ Ω and

‖ u ‖
C k + 2 , α ( Ω 0 )

6 c
(
‖ f ‖

C k , α ( Ω )
+ ‖ u ‖ L 2 ( Ω )

)
. ( 63)

In particular, u ∈ C∞ when f ∈ C∞ .

3. Regularity and existence: method of continuity.
We briefly discuss why the regularity estimates matter. Consider two bounded linear operators L, L ′

from Banach spaces X to Y . 6 Assume that we know that L is surjective and wish to establish that L ′ is
also surjective, in other words the solvability of

L ′x = y. ( 64)

for arbitrary y ∈ Y .
Define a family of operators

Lt = ( 1 − t) L + t L ′ . ( 65)

Thus L0 = L and L1 = L ′ .
Assumption. We have uniform ( that is, independent of t) a priori ( that is, assuming the existence of

solutions) estimates

‖ u ‖ X 6 c ‖ Ltu ‖ Y . ( 66)

Under this assumption, one has

Theorem 1 2. IfL0 is surjective , so is L1 .

Proof. The idea is to show that there is ε independent of t , such that if Lτ is surjective, so is Lt for all
t ∈ (τ , τ + ε) .

To see this, note that the estimate ‖ u ‖ X 6 c ‖ Ltu ‖ Y implies that all Lt ’ s are injective. Thus the
inverse Lτ

− 1 is well-defined and bounded.
We write

Ltu = f ( 67)

6 . For example, in the case L =
∑
i , j a

i j ∂ 2

∂x i ∂x j
with ai j ∈ Cα , X = C2 , α , Y = Cα .



into

Lτu = f + (Lτ − Lt)u = f + ( t − τ) (L0 − L1 )u. ( 68)

This gives

u = Lτ
− 1 f + ( t − τ)Lτ

− 1 (L0 − L1 )u. ( 69)

Therefore all we need to do is to show the existence of a fixed point of the mapping ( from X to X ) :

u � Tu ≡ Lτ− 1 f + ( t − τ)Lτ
− 1 (L0 − L1 ) u. ( 70)

It is clear that if we take t − τ small enough, we can find 0 < r < 1 , such that

‖ Tu − Tv ‖ X 6 r ‖ u − v ‖ X . ( 71 )

Now set v0 = 0 and vn = Tvn− 1 , we see that { vn } is a Cauchy sequence in X and therefore has a limit v
which is a fixed point. �

An application of this theorem is to show the existence of the solutions to

L ′u =
∑

i , j

ai j(x )
∂2u

∂xi ∂x j
+
∑

i

bi(x )
∂u

∂x i
+ c(x ) u(x ) = f ( 72 )

for Hölder continuous ai j , bi , c starting from the existence of the Poisson equation which can be shown by
explicitly construct the solutions.

Further readings.

• D. Gilbarg, N. S . Trudinger, Elliptic Partial Differential Equations of Second Order ,
Chapter 4.

• J. Jost, Partial Differential Equations , GTM 21 4, Chapter 1 0.

Exercises.

Exercise 1 . Prove the following:
If f1 , f2 ∈ Cα ( Ω) , then f1 f2 ∈ Cα (G) , and

| f1 f2 | Cα 6
(
sup
Ω
| f1 |

)
| f2 | Cα +

(
sup
Ω
| f2 |

)
| f1 | C α . ( 73)

H int: Use the identity f1 (x ) f2 ( x ) − f1 ( y) f2 ( y) = f1 ( x ) [ f2 (x ) − f2 ( y) ] + f2 ( y) [ f1 ( x) − f1 ( y) ] .

Exercise 2 . Write down the detailed proof of
If f ∈ L∞ ( Ω) , then u ∈ C1 , α ( Ω) for any 0 < α < 1 , and

‖ u ‖
C 1 , α ( Ω)

6 c ‖ f ‖ L∞ ( Ω)
. ( 74)

where

u( x) ≡
∫

Ω
Φ( x − y) f ( y) dy. ( 75 )


