Sep. 17
THE LAPLACE/P01SSON EQUATIONS: EXPLICIT FORMULAS

In this lecture we study the properties of the Laplace equation
Au=0, zeQCR?

and the Poisson equation
Au=f, reQcR?

with Dirichlet boundary conditions
x € 0N

u=gqg

through explicit representations of solutions.
We call a function u harmonic in a region 2 if Au=0 in

1. Fundamental solution.

Recall that to solve a linear constant-coefficient PDE P(D)u = f in R it suffices to find ® € D’ such

that
P(D)®=6.

Now we try to find such ® for P(D) :A:%—}—--- —l—a(%.

(4)

We notice that the equation A® = is invariant with respect to rotations/reflections, in other words, if

®(x) is a solution, then ®(O z) is also a solution where O is an orthogonal matrix. Therefore it is reason-

able to suspect that the solution takes the form
1/2

P(z)=V(r),
Simple computation yields
. )
which gives '
0P Ti 9%P x% 1
or, =V'(r) - 92 =V"(r) 5 +V/(r) (T
Summing up we have ’
A =V"(r) + "L V(1)

when r > 0.
sing supp G C sing supp § = {0}.

Therefore @ is C*° in R™\{0}, which means A® =0 holds in the classical sense for x # 0.

Thus it is reasonable to solve
ADP=0  z#0.

first to narrow down the candidates. When ® depends only on r = |z|, we have

Vi) + 2= ; L V'(r)=0  r>0.

This gives
og(V) =1 = vir)=-2
for some constant a. Integrating we obtain
blnr+c¢ n=2
V(r)= rnll2 te n>3

for constants b and c.
In particular, we can take special b and ¢ to obtain

2

Z;

r3

)

Since A® =, from general theory of distributional solutions of elliptic PDEs we know that

(5)



Definition 1. The distribution

%1n|:17| n=2
d(z) = 1 1 (14)

(2=n)na(n) |z|" 2 n=3

where a(n) is the volume of the n-dimensional unit ball (or equivalently, n a(n) is the area of the n — 1-
dimensional unit sphere), is called the fundamental solution of the Laplace’s equation.

One can verify that A® = 4§ holds in the sense of distributions. According to the definition of distribu-
tional derivatives,

BB)@)=(- D s(20) =2 = [ b0, (15)

n

where the last equality comes from the fact that ® is locally integrable, we only need to show that
[ en6=00) (16)
for any ¢ € C5°. To show this, we need to first establish the so-called Green’s formula:

Lemma 2. Let u,v be C? in Q, then

o ou
uNv—vAudr= u——v-——dS. 17)
/Q Ko 871 8’” (
where n is the outward unit normal vector of OS2.
Proof. Recall the Gauss theorem:
V- fdex= f-ndS. (18)

Q 29
Now we have

/uAU—UAud:E /[V-(qu)—Vu-Vv]—[V-(UVU)—VU-Vu]d:E
= /V-(qu—vVu)dx
/u(n~Vv)—v(n~Vu)dS

19)

v ou
— —v-—dS. 19
/an uan v (971 ( |:)’

Now we show that A® =§ for n =2, and leave the n >3 case as an exercise.

Take any ¢ € CSO(IRQ), there is R > 0 such that supp ¢ C Br where Br denotes the open ball centered
at the origin and with radius R. Now take £ > 0 small. We set 2 = Br\B: and apply the Green’s formula
to u=® and v=¢. Keep in mind that 92 has two parts.

Since AP =0 in 2, we have

/ PAp = lim O WANG RO WAN
R2 eNO0 JBg\B.

. 0P 0P . / 19,0, 0P
=1 ® - +1 e

5% OBRr anout (b 6nout 81{% OB, anin (b 6”111
A+B+C+D. (20)

Here ngy, = % for x € 0BR while nj,(z) = — % for x € 0B..
Checking term by term, we have

— A =0 since supp ¢ C Bgr which means 8§¢ =0.
out

— B =0 for the same reason.



— For C, we have

] [ oegid < [ ogel swp Vo)
OB, 8nin OB, r€0B,
< Celloge|, (21)
therefore C'=0.
— Finally, for D, we have for = € 0B,
0P x x 1 1z 1
%m—‘zv¢—‘z(5éﬂi7]hﬂﬁ—‘az- (22)
Thus
. 0P . 1
In summary, u=® % f solves the Poisson equation
Au=f (24)

in the sense of distributions for any fe€&’(R™).

2. The Green’s function for the Laplace equation.

In practice, we are more interested in solving the Poisson equation on a domain with boundary instead
of the full space.

We explicitly define

I'(a,z)=®(x —a) (25)
where @ is the fundamental solution, to make the presentation clearer.
The Dirichlet problem takes the form
Au=f inQ, u=g on 9f) (26)

In this case, we have

Theorem 3. Suppose ) is a bounded domain in R™, and that u € C1(Q) N C*(Q). Then for any a € Q
there holds

u(a):/Q I'(a,x) Au(x)dx—/m (F(a,z)%(m)—u(x}gs;(a,z))dSz. (27)

The proof uses the Green’s formula and can be found in F. Lin and Q. Han Elliptic Partial Differen-
tial Equations. One further notices that for any ¥(a, z) satisfying A, ¥ =0 (here A, denotes the Lapla-
cian with respect to the variable x), we have

u(a) = /Q f(a, z) Au(z) dz — /6(2 <f‘(a, x) (‘fnum () —u(x) gn—I;(a, z)) ds,. (28)
where
[(a,z)=T(a,z)+ ¥(a,z). (29)
Using the equation and boundary conditions, we have
[ = or Y N P
uo)= [ Feo) f@ydos [ o) ganas— [ e g, (30)

To be able to find u(a), all we need to do is to find a function G(a, ) such that
1. G(a,z)=TI(a,z)+ ¥(a,x) where ¥ is harmonic w.r.t. z,
2. G(a,z)=0 for x € 00

For such G, we have

u(a)z/Q G(a,z) f(ac)dx—i—/ g(x)gg(aw)ds. (31)



where both terms on the RHS are known (of course only when we can construct this G!).
The conditions on G implies that ¥ solves

AV =0 in 2, Y(a,z)=—-T(a,z) on 0. (32)
This can be done by cleverly transforming and combining I'’s when the domain has simple geometry.

However when for general domains obviously the problem is as hard as the original Dirichlet problem for
u.

Example 4. (Green’s function for the ball Bg) For each a € Bg, we need to find ¥(a, ) such that
NY(a,z)=0 in Bp; U(a,z)=-T(a,x) on OBg. (33)

For simplicity of presentation, we abuse notation and write I'(a, z) as I'(|Jz — al).

The idea is to find a point b = b(a)¢Bgr and a constant ¢, then set ¥(a, ) = — I'(c | — b(a)|). Note
that for any b¢Br, —I'(c |z —b|) is harmonic in Bg. Thus all we need to do is finding appropriate ¢ and b
so that

D(ja —al) = T(c|a — b]). (34)
From the explicit formula of I" we see that this can hold if and only if | — a| = ¢ |v — b]| for all x € OBk.

a b
Let a_< . ), b_< . > Then |z —a|=c |z — b| becomes
bn

(21— )+ + (:cn—an)z’:c?[(xl —by) 2+ (:cn—bn)ﬂ (35)
Simplifying, we obtain
(1=c) [af+-+an] =2[(a1— Pbr)ar+-+ (an— Ebp) 2] + 2D b= af. (36)
For this to hold for all = € 9B, we need
(1= R?=2[(a1— bi)z1+ -+ (an—Pbp) zn| +2Y b7 =>  af (37)

for all x € Br. As a consequence we have
a; = c*b; i=1,...,n (38)
(1-c®)R* = 022 b?—z a? (39)

whose solutions are

¢ T R TR
2
= aj="1 (41)
lal
Thus
_pf lal},_ &
U(a,z)= F(R x |a|2a (42)
and
2
G(a,w)zl"(|x—a|)—1"<|iRl xr— a ) (43)

Remark 5. One easily checks that G(a,x)=G(z,a) for the Green’s function on Bg, by writing

R af? j? v
:C—Wa: = —2a-x+ R? . (44)
a

]

R

la| R
Sr——a

R d

R2

This turns out to remain true for other Green’s functions. A formal argument to convince oneself about
this is the following.



Let a € Q be arbitrary. We would like to show G(a,z) = G(z,a) for all x € Q. Writing G1(z) = G(a, x),
the goal becomes to show that Gi(z) =G(z,a).
Now Gi(x) solves

AG1:5¢1, G1:0 on 89, (45)
Thus formally we have
Gila) = [ Gla,9)duly) =G a) (46)

Obviously the above argument has several “holes”. For example G(z, y)ZC(€2) so the action of §,.(y)
on it is not defined. However one can make it rigorous by computing

/ (Gl AGQ — G2 AGl) dx (47)
Q\BE(Il)UBE(LEz)

where Gi(x) = G(z1, z) and Ga(x) = G(z, x2), and then let € \, 0. See L. C. Evans Partial Differential
Equations for details.

3. Harmonic functions.
A function u € C?(Q) is said to be harmonic if Au=0. Let g be its boundary value, we see that

u(a) :/ g(x) G (a,z)dS;. (48)
a0 g
In particular, when €2 = Bpg, we have the Poisson representation formula

2_g)? x
R ] 6(x)

“ 0 F Jop, Ja—2T" ds,. (49)

4. Well-posedness.
Given the Dirichlet problem

Au=f, u=g on 0%, (50)

as soon as we have the Green’s function, we can write

= a,x €T i €T aG a,xr
uo)= [ Gla.a) f@)de+ [ ga) G @) as, gy

There are several issues need to be settled (they will be settled in the following few weeks).

—  Existence.

The formula itself does not give us existence of the solution per se. We need to show that Au=
f indeed holds and u takes g as its boundary value. In light of the next section, we can set v =u —
| T(xz—1y) f(y) which satisfies the Laplace equation Av =0 with some boundary conditions. Thus
the question becomes whether we can show the existence of solutions to the Laplace equation.

When Q = Bp, it suffices to show that the Poisson integral representation indeed gives a solu-
tion to the Laplace equation.

For general €, it is not possible to find a Green’s function with explicit formula. It turns out
somehow one can show the existence of solution to the Laplace equation Awu = 0 through solving it
iteratively on balls inside the domain. This is the Perron’s method.

—  Uniqueness.
It can be easily seen that if uq, us solves the same Poisson’s equation, their difference u; — us
satisfies the Laplace equation with zero boundary condition. Thus we only need to show that the
zero function is the only solution in this situation. This is a consequence of the maximum principle.

—  Regularity.
In the following section we prove a trivial regularity result. In the next lecture we will prove
much more refined regularity versions.



5. Regularity — a glimpse.
Let ®(z) be the fundamental solution of the Laplacian. Assuming f € CZ(R"™) (twice continuously dif-
ferentiable with compact support), then we have u= [, ®(z —y) f(y) € C*(R").
First write
u=[ e-u)fw=[ e 1wy, (52)
Recall that @ is locally integrable, thus by assumption both ®(y) %f(ac —y) and ®(y) 81?;36‘]”(90 —y) are
integrable. As a consequence one has ' o

ou o 92u 92
g | PGSl G ) (53)
following from properties of the Lebesgue integrals.! Since both % f(z —y) and af;xv f(z — y) are uni-
K2 7 J

formly continuous, u € C?.

The above result is obviously not satisfactory as no improvement on regularity is obtained, while intu-
itively, since f is a linear combination of the double derivatives of u, one would expect the regularity of u
to be better than that of f. For example, it is natural to guess that f € C == u € C? (which is obviously
true in the one dimensional case). Unfortunately this particular conjecture is wrong, but u turns out to be
indeed twice more differentiable than f if we use the “right” function spaces. We will discuss this issue
more in the next lecture.

Further readings.
e L. C. Evans, Partial Differential Equations, §2.2.

e D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Chapter 2, Classics in Mathematics, Springer.

e Fanghua Lin, Qing Han, Elliptic Partial Differential Equations, §1.3, Courant Lecture Notes
1, AMS.

Exercises.

Exercise 1. Prove that the fundamental solution for dimensional at least 3:

1 1

&)= (2—n)na(n) |;(;|”*2

(55)
solves the equation

AD=6 (56)
in the sense of distributions. Remember that n a(n) is the area of the unit sphere in R"™. results.

Exercise 2. Construct the Green’s function for the half-space {x, >0}.

1. One can also prove directly using finite differences. For example, let e; be the unit vector in z; direction, that is e; =
0,...,1,...,0) with the only 1 in the i-th position. Then

seteel @ | el p ol (54)

€ h

Since feC2, flatee- z) it A Gl ) N %(SE — y) uniformly because % is uniformly continuous.



