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The Laplace/Poisson Equations : Explicit Formulas

In this lecture we study the properties of the Laplace equation

4u = 0 , x ∈ Ω ⊂ Rd ( 1 )

and the Poisson equation

4u = f , x ∈ Ω ⊂ Rd ( 2 )

with Dirichlet boundary conditions

u = g x ∈ ∂Ω ( 3)

through explicit representations of solutions.
We call a function u harmonic in a region Ω if 4u = 0 in Ω .

1 . Fundamental solution.
Recall that to solve a linear constant-coefficient PDE P(D ) u = f in Rd , it suffices to find Φ ∈ D ′ such

that

P(D ) Φ = δ. ( 4)

Now we try to find such Φ for P(D ) = 4 =
∂ 2

∂x 1
2 + � +

∂ 2

∂xd
2 .

We notice that the equation 4Φ = δ is invariant with respect to rotations/ reflections, in other words, if
Φ(x ) is a solution, then Φ(O x) is also a solution where O is an orthogonal matrix. Therefore it is reason-
able to suspect that the solution takes the form

Φ(x ) = V ( r) , r =
(
x1

2 + � + xn
2
) 1 / 2

. ( 5)

Simple computation yields

∂r

∂x i
=

1

2

(
x1

2 + � + xn
2
) − 1 / 2

2 x i =
xi
r

x
�

0 , ( 6)

which gives
∂Φ

∂x i
= V ′( r)

xi
r

;
∂2Φ

∂x i
2 = V ′′( r)

x i
2

r2
+ V ′( r)

(
1

r
− xi

2

r3

)
. ( 7)

Summing up we have

4Φ = V ′′( r) +
n − 1

r
V ′( r) ( 8)

when r > 0 .
S ince 4Φ = δ , from general theory of distributional solutions of elliptic PDEs we know that

sing suppG ⊂ sing supp δ = { 0} . ( 9)

Therefore Φ is C∞ in Rn\ { 0} , which means 4Φ = 0 holds in the classical sense for x
�

0 .
Thus it is reasonable to solve

4Φ = 0 x
�

0 . ( 1 0)

first to narrow down the candidates. When Φ depends only on r = | x | , we have

V ′′( r) +
n − 1

r
V ′( r) = 0 r > 0 . ( 1 1 )

This gives

log(V ′) ′ =
1 − n
r � V ′( r) =

a

rn− 1 ( 1 2 )

for some constant a . Integrating we obtain

V ( r) =




b ln r + c n = 2
b

rn− 2
+ c n > 3

( 1 3)

for constants b and c .
In particular, we can take special b and c to obtain



Definition 1 . The distribution

Φ( x) ≡





1

2 π
ln | x | n = 2

1

( 2 − n) n α(n)

1

| x | n− 2 n = 3
( 1 4)

where α (n) is the vo lume of the n- dimensional unit ball (or equivalently, n α (n) is the area of the n − 1 -
dimensional unit sphere), is cal led the fundamental solution of the Laplace ’ s equation.

One can verify that 4Φ = δ holds in the sense of distributions. According to the definition of distribu-
tional derivatives,

(4Φ ) ( φ ) ≡ ( − 1 )
2

Φ(4 φ ) = Φ (4 φ ) =

∫

Rn
Φ 4 φ , ( 1 5)

where the last equality comes from the fact that Φ is locally integrable, we only need to show that
∫

Rn
Φ 4 φ = φ ( 0) ( 1 6)

for any φ ∈ C0
∞ . To show this, we need to first establish the so-called Green’ s formula:

Lemma 2. Let u , v be C2 in Ω , then
∫

Ω

u 4v − v 4u dx =

∫

∂Ω

u
∂v

∂n
− v ∂u

∂n
dS. ( 1 7)

where n is the outward unit normal vector of ∂Ω .

Proof. Recall the Gauss theorem: ∫

Ω

∇ · f dx =

∫

∂Ω

f · n dS. ( 1 8)

Now we have ∫
u 4v − v 4u dx =

∫
[∇ · ( u∇v ) − ∇u · ∇v ] − [∇ · ( v ∇u) − ∇v · ∇u ] dx

=

∫
∇ · ( u∇v − v ∇u) dx

=

∫

∂Ω

u (n · ∇v ) − v (n · ∇u) dS

=

∫

∂Ω

u
∂v

∂n
− v ∂u

∂n
dS. ( 1 9)

�

Now we show that 4Φ = δ for n = 2 , and leave the n > 3 case as an exercise.
Take any φ ∈ C0

∞( R2
)
, there is R > 0 such that supp φ ⊂ BR where BR denotes the open ball centered

at the origin and with radius R . Now take ε > 0 small. We set Ω = BR \Bε and apply the Green’ s formula
to u = Φ and v = φ . Keep in mind that ∂Ω has two parts.

S ince 4Φ = 0 in Ω , we have
∫

R 2

Φ 4 φ = lim
ε↘ 0

∫

BR\Bε
Φ 4 φ − φ 4Φ

= lim
ε↘ 0

∫

∂BR

Φ
∂φ

∂nout
− φ ∂Φ

∂nout
+ lim
ε↘ 0

∫

∂Bε

Φ
∂φ

∂nin
− φ ∂Φ

∂nin

≡ A + B + C + D. ( 20)

Here nout =
x

R
for x ∈ ∂BR while nin (x ) = − x

ε
for x ∈ ∂Bε .

Checking term by term, we have

− A = 0 since supp φ ⊂ BR which means ∂φ

∂no u t
= 0 .

− B = 0 for the same reason.



− For C , we have
∣∣∣∣
∫

∂Bε

Φ
∂φ

∂nin

∣∣∣∣ 6
∫

∂Bε

| log ε | sup
x ∈ ∂Bε

| ∇φ |
6 Cε | log ε | , ( 21 )

therefore C = 0 .

− Finally, for D , we have for x ∈ ∂Bε ,
∂Φ

∂nin
= − x

ε
· ∇Φ = − x

ε
·
(

1

2 π

) [
1

r

x

r

] �

r= | x | = ε = − 1

2 π ε
. ( 22 )

Thus

D = lim −
∫
φ
∂Φ

∂nin
= lim

1

2 π ε

∫

∂Bε

φ = φ ( 0) . ( 23)

In summary, u = Φ ∗ f solves the Poisson equation

4u = f ( 24)

in the sense of distributions for any f ∈ E ′(Rn) .

2. The Green’ s function for the Laplace equation.
In practice, we are more interested in solving the Poisson equation on a domain with boundary instead

of the full space.
We explicitly define

Γ( a , x ) = Φ ( x − a) ( 25)

where Φ is the fundamental solution, to make the presentation clearer.
The Dirichlet problem takes the form

4u = f in Ω , u = g on ∂Ω ( 26)

In this case, we have

Theorem 3. Suppose Ω is a bounded domain in Rn , and that u ∈ C1 ( Ω) ∩ C2 ( Ω) . Then for any a ∈ Ω
there holds

u( a) =

∫

Ω

Γ( a , x) 4u( x) dx −
∫

∂Ω

(
Γ( a , x)

∂u

∂nx
( x) − u( x)

∂Γ

∂nx
( a , x)

)
dSx . ( 27)

The proof uses the Green’ s formula and can be found in F. Lin and Q. Han Elliptic Partial Differen-
tial Equations . One further notices that for any Ψ( a , x) satisfying 4 xΨ = 0 ( here 4 x denotes the Lapla-
cian with respect to the variable x ) , we have

u( a) =

∫

Ω

Γ̃( a , x) 4u( x) dx −
∫

∂Ω

(
Γ̃( a , x)

∂u

∂nx
( x) − u( x)

∂Γ̃

∂nx
( a , x)

)
dSx . ( 28)

where

Γ̃( a , x ) = Γ( a , x ) + Ψ( a , x ) . ( 29)

Using the equation and boundary conditions, we have

u( a ) =

∫

Ω

Γ̃( a , x) f ( x) dx +

∫

∂Ω

g(x )
∂Γ̃

∂nx
( a , x ) dS −

∫

∂Ω

Γ̃( a , x )
∂u

∂nx
(x ) . ( 30)

To be able to find u( a) , all we need to do is to find a function G ( a , x) such that

1 . G ( a , x) = Γ( a , x) + Ψ( a , x) where Ψ is harmonic w. r. t. x ,

2 . G ( a , x) = 0 for x ∈ ∂Ω .

For such G , we have

u( a) =

∫

Ω

G ( a , x ) f (x ) dx +

∫

∂Ω

g( x )
∂G

∂nx
( a , x ) dS. ( 31 )



where both terms on the RHS are known ( of course only when we can construct this G ! ) .
The conditions on G implies that Ψ solves

4Ψ = 0 in Ω , Ψ( a , x ) = − Γ( a , x ) on ∂Ω . ( 32 )

This can be done by cleverly transforming and combining Γ ’ s when the domain has simple geometry.
However when for general domains obviously the problem is as hard as the original Dirichlet problem for
u .

Example 4. (Green’ s function for the ball BR) For each a ∈ BR , we need to find Ψ( a , x ) such that

4 xΨ( a , x ) = 0 in BR ; Ψ ( a , x ) = − Γ( a , x ) on ∂BR . ( 33)

For simplicity of presentation, we abuse notation and write Γ( a , x) as Γ( | x − a | ) .
The idea is to find a point b = b( a)∈BR and a constant c , then set Ψ( a , x) = − Γ( c | x − b( a) | ) . Note

that for any b∈BR , − Γ( c | x − b | ) is harmonic in BR . Thus all we need to do is finding appropriate c and b
so that

Γ( | x − a | ) = Γ( c | x − b | ) . ( 34)

From the explicit formula of Γ we see that this can hold if and only if | x − a | = c | x − b | for all x ∈ ∂BR .
Let a =



a 1

�

an


 , b =



b 1

�

bn


 . Then | x − a | = c | x − b | becomes

(x1 − a1 )
2 + � + (xn − an)

2 = c2
[

( x1 − b1 ) 2 + � + (xn − bn)
2
]

( 35)

Simplifying, we obtain
(
1 − c2

) [
x1

2 + � + xn
2
]

= 2
[ (
a1 − c2 b1

)
x1 + � +

(
an − c2 bn

)
xn

]
+ c2

∑
bi
2 −

∑
ai

2 . ( 36)

For this to hold for all x ∈ ∂BR , we need
(
1 − c2

)
R2 = 2

[ (
a1 − c2 b1

)
x1 + � +

(
an − c2 bn

)
xn

]
+ c2

∑
bi
2 −

∑
ai

2 ( 37)

for all x ∈ BR . As a consequence we have

ai = c2 bi i = 1 , � , n ( 38)(
1 − c2

)
R2 = c2

∑
bi
2 −

∑
ai

2 ( 39)

whose solutions are

c2 =

∑
ai

2

R2
=
| a | 2
R2

( 40)

b = a/ c2 =
R2

| a | 2
a. ( 41 )

Thus

Ψ( a , x) = − Γ

(
| a |
R

∣∣∣∣∣ x −
R2

| a | 2
a

∣∣∣∣∣

)
( 42 )

and

G ( a , x ) = Γ( | x − a | ) − Γ

(
| a |
R

∣∣∣∣∣ x −
R2

| a | 2
a

∣∣∣∣∣

)
. ( 43)

Remark 5. One easily checks that G ( a , x ) = G( x , a) for the Green’ s function on BR , by writing

| a |
R

∣∣∣∣∣ x −
R2

| a | 2
a

∣∣∣∣∣ =

∣∣∣∣
| a |
R
x − R

| a | a
∣∣∣∣ =

(
| a | 2 | x | 2
R2

− 2 a · x + R2

) 1 / 2

. ( 44)

This turns out to remain true for other Green’ s functions. A formal argument to convince oneself about
this is the following.



Let a ∈ Ω be arbitrary. We would like to show G ( a , x ) = G (x , a) for all x ∈ Ω . Writing G1 (x ) ≡ G ( a , x ) ,
the goal becomes to show that G1 (x ) = G (x , a) .

Now G1 ( x) solves

4G1 = δa , G1 = 0 on ∂Ω , ( 45)

Thus formally we have

G1 (x ) =

∫

Ω

G (x , y) δa ( y) = G( x , a) . ( 46)

Obviously the above argument has several “holes”. For example G(x , y) ∈C ( Ω) so the action of δa ( y)
on it is not defined. However one can make it rigorous by computing

∫

Ω\Bε ( x 1 ) ∪Bε ( x 2 )

(G1 4G2 − G2 4G1 ) dx ( 47)

where G1 (x ) = G( x1 , x) and G2 ( x) = G (x , x2 ) , and then let ε ↘ 0 . See L. C. Evans Partial Differential
Equations for details.

3. Harmonic functions.
A function u ∈ C2 ( Ω) is said to be harmonic if 4u = 0 . Let g be its boundary value, we see that

u( a) =

∫

∂Ω

g( x)
∂G

∂nx
( a , x ) dSx . ( 48)

In particular, when Ω = BR , we have the Poisson representation formula

u( a) =
R2 − | a | 2
n α (n) R

∫

∂BR

g(x )

| a − x | n dSx . ( 49)

4. Well-posedness.
Given the Dirichlet problem

4u = f , u = g on ∂Ω , ( 50)

as soon as we have the Green’ s function, we can write

u( a) =

∫

Ω

G( a , x) f (x ) dx +

∫

∂Ω

g(x )
∂G

∂nx
( a , x) dSx . ( 51 )

There are several issues need to be settled ( they will be settled in the following few weeks) .

− Existence.
The formula itself does not give us existence of the solution per se. We need to show that 4u =

f indeed holds and u takes g as its boundary value. In light of the next section, we can set v = u −∫
Γ( x − y) f ( y) which satisfies the Laplace equation 4v = 0 with some boundary conditions. Thus

the question becomes whether we can show the existence of solutions to the Laplace equation.
When Ω = BR , it suffices to show that the Poisson integral representation indeed gives a solu-

tion to the Laplace equation.
For general Ω , it is not possible to find a Green’ s function with explicit formula. It turns out

somehow one can show the existence of solution to the Laplace equation 4u = 0 through solving it
iteratively on balls inside the domain. This is the Perron’ s method.

− Uniqueness.
It can be easily seen that if u1 , u2 solves the same Poisson’ s equation, their difference u1 − u2

satisfies the Laplace equation with zero boundary condition. Thus we only need to show that the
zero function is the only solution in this situation. This is a consequence of the maximum principle.

− Regularity.
In the following section we prove a trivial regularity result. In the next lecture we will prove

much more refined regularity versions.



5. Regularity – a glimpse.
Let Φ( x) be the fundamental solution of the Laplacian. Assuming f ∈ Cc2 (Rn) ( twice continuously dif-

ferentiable with compact support) , then we have u =
∫

Rn
Φ( x − y) f ( y) ∈ C2 (Rn) .

First write

u =

∫

Rn
Φ (x − y) f ( y) =

∫

Rn
Φ ( y) f (x − y) . ( 52 )

Recall that Φ is locally integrable, thus by assumption both Φ( y)
∂

∂x i
f ( x − y) and Φ( y)

∂ 2

∂x i∂x j
f ( x − y) are

integrable. As a consequence one has

∂u

∂xi
=

∫
Φ( y)

∂

∂x i
f (x − y) and

∂2u

∂xi ∂x j
= Φ( y)

∂2

∂x i∂x j
f (x − y) ( 53)

following from properties of the Lebesgue integrals. 1 Since both ∂

∂x i
f ( x − y) and ∂ 2

∂x i∂x j
f (x − y) are uni-

formly continuous, u ∈ C2 .

The above result is obviously not satisfactory as no improvement on regularity is obtained, while intu-
itively, since f is a linear combination of the double derivatives of u , one would expect the regularity of u
to be better than that of f . For example, it is natural to guess that f ∈ C � u ∈ C2 (which is obviously
true in the one dimensional case) . Unfortunately this particular conjecture is wrong, but u turns out to be
indeed twice more differentiable than f if we use the “right” function spaces. We will discuss this issue
more in the next lecture.

Further readings.

• L. C. Evans, Partial Differential Equations , § 2 . 2 .

• D. Gilbarg, N. S . Trudinger, Elliptic Partial Differential Equations of Second Order ,
Chapter 2 , Classics in Mathematics, Springer.

• Fanghua Lin, Qing Han, Elliptic Partial Differential Equations , § 1 . 3, Courant Lecture Notes
1 , AMS.

Exercises.

Exercise 1 . Prove that the fundamental solut ion for dimensional at least 3 :

Φ (x ) =
1

( 2 − n) n α(n)

1

| x | n− 2
( 5 5 )

solves the equation

4Φ = δ ( 5 6)

in the sense of distributions. Remember that n α (n) is the area of the unit sphere in Rn . results .

Exercise 2 . Construct the Green’ s function for the half-space {xn > 0} .

1 . One can also prove directly using finite differences. For example, let ei be the unit vector in x i direct ion, that is ei =
( 0 , � , 1 , � , 0) with the only 1 in the i-th position. Then

u(x + ε ei) − u(x )

ε
=

∫

R n

Φ( y)
f ( x + ε ei − y) − f ( x − y)

h
dy. ( 5 4)

S ince f ∈ Cc2 , f ( x + ε e i − y ) − f ( x − y )

h
→ ∂f

∂x i
( x − y) uniformly because ∂f

∂x i
is uniformly continuous.


