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Distributions

Distributions are generalized functions. Some familiarity with the theory of distributions helps under-
standing of various function spaces which play important roles in the study of PDEs. In this lecture we
will introduce the theory of distributions, and illustrate its power show via examples.

1 . Distributions.

1 . 1 . Introduction.

Definition 1 . (Distributions) A distribution T on Ω is a linear functional on C0
∞ ( Ω) such that

T( φ j) → 0 for every sequence { φj } ⊂ C0
∞ ( Ω) converging to 0 , that is satisfying 1

i. the supports of all φjs are in a common compact set K ⊂ Ω . Here K is independent of j.

ii. supx ∈K | Dαφ j | → 0 as j→∞ for al l α with | α | > 0 .

We denote the space of distributions on Ω by D ′( Ω) 2 .

Example 2. The following linear functionals are distributions.

1 . Let f be a locally integrable function on Rd . Define linear functional Tf by

Tf ( φ ) =

∫

Rn
f φ. ( 2 )

2 . Let a ∈ Rd . Consider the Dirac delta function:

δa( φ) ≡ φ (a ) . ( 3)

3. Let a ∈ Rd , and α a multi-index. Define

δa
α ( φ ) = ( − 1 )

| α |
(Dαφ ) (a ) . ( 4)

− If {Tj } ⊂ D ′( Ω) satisfies Tjφ→ 0 for any φ ∈ C0
∞ ( Ω) , we say Tj converges to 0 in D ′( Ω) , and write

Tj→ 0 . We say Tj→ T if Tj − T→ 0 . It turns out that D ′( Ω) is complete under this topology3 .

− For T ∈ D ′( Ω) , we say that T is zero on an open set V ⊆ Ω if T( φ ) = 0 for every φ ∈ C0
∞ (V ) . The

support of T ∈ D ′( Ω) is defined as follows:

supp T = {x ∈ Ω
�
T≡0 on any neighborhood of x } . ( 6)

1 . This topology is “induced” from the natural topology on the space C∞ defined by the semi-norms

pR , k (u) ≡
∑

| α | 6 k
sup
| x | 6 R

| Dαu | . ( 1 )

2. The reason for such notation is that L . S chwartz used D to denote C0
∞ in his original paper.

3 . We need to show that if Tn( φ) converges for every φ ∈ C0
∞ , the limit T defined by

T( φ) = lim
n↗∞

Tn( φ) ( 5 )

is also a distribution.
This is a direct consequence of the Banach-S teinhaus Theorem in functional analysis ( note that C0

∞ is metrizable) . But
one can also prove it directly via the following argument .

1 . If T � D ′ , then there are φn→ 0 but | T( φn ) | > c > 0 . Replacing φn by cn φn for appropriate cn we can make | T( φn ) | ↗∞ .
We want to construct ψ ∈ C0

∞ such that Tn (ψ)→0 , thus getting a contradict ion. The idea is to find subsequences ψi
and Si , such that Si( ψi) is large ( possible because T( ψi) is large, and Sj ( ψi) small for all j � i . Then set ψ =

∑
ψi .

2 . Now take φi such that | T( φi) | > 1 and then we can find Tj such that | Tj ( φi) | > 1 . Set ψ1 = φi , S1 = Tj .

3 . Choose ψn such that | Si ( ψn) | < 1 / 2n− j for j = 1 , � , n − 1 , and | T( ψn) | > ∑ j= 1
n− 1 | T(ψj ) | + n . Then choose Sn satisfying

| Sn( ψn) | > ∑ j= 1
n− 1 | T( ψj ) | + n .

4. Set ψ =
∑

1
∞ ψn . We have | Sn (ψ) | > n − 1 .

One can further show that if Tn→ 0 in D ′ and φn→ 0 in C0
∞ , then Tn ( φn ) → 0 .



Example 3. The support of δaα is {a } .

There is an alternative definition which is much more useful in practice. We present it as a lemma.

Lemma 4. Let T ∈ D ′( Ω) . Then for any compact subset K of Ω , there is n = n(K) ∈ N and C = C (K)
such that

| T( φ ) | 6 C
∑

| α | 6 n
max
x ∈K
| Dαφ (x ) | ( 7)

for al l φ supported in K.
Converse ly, if the above is satisfied for a linear functional T on C0

∞ , then T ∈ D ′( Ω) .

Proof. The “converse” direction is trivial.
For the other direction, we prove by contradiction. Assume that there is T ∈ D ′( Ω) such that there is a

compact subset K of Ω , such that there are φn ∈ C0
∞ ( Ω) supported in K and

| T( φn) | > n
∑

| α | 6 n
max
x ∈K
| Dαφn( x) | . ( 8)

By replacing φn by cn φn , we can set | T( φn) | = 1 . Thus we have
∑

| α | 6 n
max
x ∈K
| Dαφn( x) | < 1

n
. ( 9)

But this implies φn→ 0 , consequently T( φn) → 0 and we obtain a contradiction. �

Remark 5. The constant n(K) may not be uniform. For example, let T ∈ D ′(R) be defined by

T( φ ) =
∑

n= 1

∞
φ (n) (n) . ( 1 0)

If n can be taken to be independent of K , then the smallest uniform n is called the order of the distribu-
tion T . For example, the Dirac δ function is a distribution of order 0 , the distribution δa

α has order | α | .

Remark 6. It turns out that C0
∞ is dense in D ′ , that is, any distribution T is the limit of a sequence of

C0
∞ functions fn , in the sense that for any φ ∈ C0

∞ ,

T( φ) = lim
n↗∞

∫

Rd
fn( x) φ( x) dx. ( 1 1 )

1 . 2 . Operations on distributions.

Differentiation.

Definition 7. (Derivatives of a distribution) Let T ∈ D ′( Ω) , and let α be any multi- index of nonneg-
ative integers. The derivative DαT is defined by

DαT( φ ) = ( − 1 )
| α | T(Dαφ ) . ( 1 2 )

Example 8. Consider the Heaviside function

H(x ) =

{
0 x < 0
1 x > 0

. ( 1 3)

H is locally integrable, and we identify it with the distribution TH . We can show that H ′ = δ .
If we define K by

K( x) =

{
0 x < 0
x x > 0

. ( 1 4)

then K ′ = H .



Example 9. Let

x+
λ ≡

{
0 x 6 0

xλ x > 0
( 1 5)

with − 1 < λ < 0 .

Differentiating naively, we would have
(
x+
λ
) ′

=

{
0

λ xλ − 1 but it is not locally integrable and is not a

distribution. The correct computation is as follows.
(
x+
λ
) ′

( φ ) = −
(
x+
λ
)
( φ ′)

= −
∫

0

∞
xλ φ ′( x) dx

= − lim
ε→ 0

∫

ε

∞
xλ φ ′( x) dx

= lim
ε→ 0

∫

ε

∞
λ xλ − 1 φ( x) dx + ελ φ ( ε)

= lim
ε→ 0

∫

ε

∞
λ xλ − 1 φ( x) dx + ελ φ ( 0) + ελ [ φ( ε) − φ( 0) ]

= lim
ε→ 0

∫

ε

∞
λ xλ − 1 [ φ (x ) − φ( 0) ] . ( 1 6)

Therefore the distributional derivative of x+
λ is defined by

(
x+
λ
) ′

( φ) = lim
ε→ 0

∫

ε

∞
λ xλ − 1 [ φ (x ) − φ( 0) ] . ( 1 7)

Example 1 0. (Poisson summation formula) We consider the sum

cos x + cos 2 x + � . ( 1 8)

It turns out the limit of this diverging sequence exists as a distribution.
To see this, let Tn =

∑
1
n cos k x and Sn =

∑
1
n 1

k
sin k x . From basic Fourier analysis we know that Sn→

π − x
2

locally uniformly on ( 0 , 2 π) . S ince Sn is uniformly bounded, one can show that Sn converges to the
periodic expansion of π − x

2
in D ′(R) . On the other hand we see that Tn = Sn

′ as distributions, thus Tn →
S ′ where S = lim Sn . Therefore we obtain the summation formula

∑

1

∞
cos k x = − 1

2
+ π

∑

n∈ Z
δ (x − 2 n π) . ( 1 9)

Example 1 1 . Let T ∈ D ′(R) . If T ′ = 0 then T is a constant. To see this, recall that T ′ = 0 implies

T( φ ′) = 0 ( 20)

for all φ ∈ C0
∞ (R) . Now take an arbitrary function h ∈ C0

∞ (R) with
∫
h = 1 . For any ψ ∈ C0

∞ (R) we have

ψ (x ) = h (x )

∫

R

ψ ( s ) ds + ψ1 (x ) ( 21 )

Since
∫
ψ1 (x ) = 0 , its primitive φ (x ) =

∫
− ∞
x

ψ1 ( s ) ds ∈ C0
∞ (R) and consequently

T( ψ ) = T

(
h ( x)

∫

R

ψ ( s ) ds

)
+ T( ψ1 ) = (T(h ( x) ) )

∫

R

ψ ( s ) ds . ( 22 )

In other words,

T = T( h (x ) ) ( 23)

is a constant as a distribution. One can show using similar ideas that any T ∈ D ′
(
Rd
)
with ∇T = 0 is a

constant.



Multiplication by smooth functions.
Let T ∈ D ′( Ω) and f ∈ C∞ ( Ω) . Then we can define a linear functional fT by

( fT) ( φ ) = T( f φ ) . ( 24)

We see that fT ∈ D ′( Ω) by noticing that

1 . fφ ∈ C0
∞ ( Ω) when φ ∈ C0

∞ ( Ω) ;

2 . When φj→ 0 in C0
∞ ( Ω) , fφ j→ 0 too.

Convolution.
In general, the product TS for T, S ∈ D ′( Ω) is not defined. What we can do is calculate their convolu-

tion.

Definition 1 2. (Convolution of functions) Let f , g be integrab le . We define a new function f ∗ g by

( f ∗ g) (x ) =

∫

Rd
f ( y) g( x − y) dy. ( 25)

The convolution operation has the following properties:

1 . f ∗ g is integrable;

2 . f ∗ g = g ∗ f ; f ∗ ( g ∗ h ) = ( f ∗ g) ∗ h ;
3 . supp ( f ∗ g) ⊆ supp f + supp g , where the sum of two sets A, B is defined as A + B = {x �

x = y + z ,
y ∈ A, z ∈ B } .

4. If f is differentiable, so is f ∗ g ( even if g is not) , and Dα ( f ∗ g) = (Dαf ) ∗ g .
We can extend the convolution operation to distributions, using the following calculations as a guide:

∫
( f ∗ g) (x ) φ (x ) dx =

∫ ( ∫
f ( y) g(x − y) dy

)
φ (x ) dx

=

∫∫
f ( y) g( x − y) φ (x ) dy dx

=

∫
f ( y)

( ∫
g(x − y) φ( x) dx

)
dy

=

∫
f ( y)

( ∫
g( z ) φ ( z + y) dz

)
dy

=

∫
f ( y) (Tg( φ( · + y) ) ) dy

= Tf (Tg( φ( · + y) ) ) . ( 26)

Now let T, S ∈ D ′( Ω) and assume S has compact support ( denoted as S ∈ E ′( Ω) 4 ) , we define

(T ∗ S) ( φ ) ≡ Ty(Sx ( φ (x + y) ) ) . ( 27)

where the subscripts y , x means the distributions T and S are acting in the y-space and x-space respec-
tively.

We can show that the above properties still hold:

1 . (T ∗ S ) ∈ D ′( Ω) 5 ;

2 . T ∗ S = S ∗ T; If U ∈ E ′( Ω) , (T ∗ S ) ∗ U = T ∗ (S ∗ U ) ;

3 . supp (T ∗ S ) ⊆ supp T + supp S ;

4. Dα (T ∗ S ) = (DαT) ∗ S = T ∗ (DαS ) . Recall that distributions are infinitely differentiable in the
space of distributions.

4. E ( Ω) is the notation for C∞ ( Ω) used by Schwartz, and compacted supported distributions form the dual space of it ,
thus the notation E ′( Ω) .

5 . This is not true without the condition on the support of S . More specifically, Sy ( φ(x + y) ) may not still be in C0
∞

when the support of S is not compact. Consider for example the distribution S1 obtained by the constant function 1 .



Example 1 3. Let T ∈ D ′( Ω) , we compute T ∗ δ . Let φ ∈ C0
∞ . We have

(T ∗ δ) ( φ ) = Ty( δx ( φ ( · + y) ) = T( φ) . ( 28)

Therefore

T ∗ δ = T ( 29)

More generally,

T ∗ (Dαδ) = DαT. ( 30)

for any multi-index α .

Example 1 4. (Fundamental solutions) The power of distributions in the study of linear PDEs comes
from the following fact:

Let P(D ) be a differential operator with constant coefficients. Let G solves

P(D )G = δ ( 31 )

Such a G ∈ D ′ is called a fundamental solution of the operator P .
Then for any f ∈ D ′ we have

P(D ) (G ∗ f ) = [P(D )G ] ∗ f = δ ∗ f = f . ( 32 )

In other words G ∗ f solves the equation

P(D )u = f. ( 33)

Therefore the solvability of any constant-coefficient equation P(D ) u = f reduces to the existence of the
fundamental solution G .

Fourier transform of distributions.
In this part we consider the case Ω = Rd . A very powerful tool in the study of PDEs is the Fourier

transform, which turns differential equations into algebraic equations. Unfortunately not all distributions
have Fourier transforms. The appropriate subset that has Fourier transforms is called tempered distribu-
tions and denoted S ′ . To do this we need to first define the space of rapidly decreasing functions.

Definition 1 5. (Rapidly decreasing functions) We first define the space S of rapidly decreasing func-
tions:

S =

{
f ∈ C∞

(
Rd
)
: lim
| x | →∞

∣∣ xα D βf ( x)
∣∣ = 0 for all multi- indices α and β

}
. ( 34)

A sequence { φn } ⊂ S is said to converge to 0 in S, denoted φn→ 0 in S, if

lim
n↗∞

sup
x ∈Rd

∣∣∣ 〈 x 〉 k Dβφn(x )
∣∣∣ = 0 . ( 35)

for al l k , β. Here

〈 x 〉 ≡
(
1 + x1

2 + � + xd
2
) 1 / 2

. ( 36)

Example 1 6. e− | x |
2 ∈ S . Note that it does not belong to C0

∞ .

One can show that C0
∞ ⊂ S and φn→ 0 in C0

∞ implies φn→ 0 in S .

Definition 1 7. (Tempered distributions) The space of tempered distributions, denoted S ′ , consists of
those functionals on S such that if φn → 0 in S, then T( φn) → 0 . Equivalently, T ∈ S ′ if there are m, C
such that

| T( φ ) | 6 C
∑

| α | 6m
sup
x ∈ Rd

∣∣ 〈 x 〉mDαφ (x )
∣∣ ∀φ ∈ S . ( 37)

Example 1 8. δaα ∈ S ′ for all point a and multi-index α .

Now we can define the Fourier transform of T ∈ S ′ .



Definition 1 9. (Fourier transform of tempered distributions) Let T ∈ S ′ . Its Fourier transform T̂
is defined by

T̂ ( φ) = T
(
φ̂
)

( 38)

for any φ ∈ S.

Remark 20. The above definition is motivated by the following calculation for f , g ∈ S . 6

Tf̂ ( g) =

∫
f̂ ( ξ) g( ξ) =

∫ ( ∫
e− i ξ · x f (x )

)
g( ξ) =

∫ ( ∫
e− i ξ · x g( ξ)

)
f (x ) =

∫
ĝ ( x) f ( x ) = Tf ( ĝ ) . ( 41 )

Remark 21 . For this definition to make sense, it must hold that whenever φ ∈ S , φ̂ ∈ S too. It turns out
that ·̂ is an isomorphism on S ( Interested readers can try to verify this) . As a consequence, it is also an
isomorphism on the dual space S ′ .

We notice that when φn→ 0 in S , so is φ̂n . Therefore T̂ ∈ S ′ .

Example 22. We compute δ̂ . Take any φ ∈ S . we have

δ̂ ( φ ) = δ
(
φ̂
)

= φ̂ ( 0) = ( 2 π)
− d/ 2

∫

Rd
φ (x ) dx. ( 42 )

Therefore

δ̂ = ( 2 π)
− d/ 2 1 ( 43)

where 1 is the constant function.

Example 23. Consider the tempered distribution defined by the locally integrable function ei a x for a ∈
R. For any φ ∈ S , we have

e ia x ( φ ) = e ia x
(
φ̂
)

=

∫

Rd
e ia x φ̂ ( x) dx = ( 2 π)

n/ 2 φ ( a) = ( 2 π)
n/ 2 δa ( φ ) . ( 44)

Therefore

e i a x = ( 2 π)
n/ 2

δa . ( 45)

The following properties are useful.

Proposition 24. Let Dj = − i ∂

∂x j
. Then

a ) DjT = ξj T̂; This implies P(D )T = P( ξ) T̂ for any partial differential operator P(D ) whose coeffi-
cients are constants.

b ) x jT = − Dj T̂;

c ) T ∗ S = ( 2 π)
n/ 2

T̂Ŝ, here we require S ∈ E ′7 .

Example 25. Let P(D ) be a differential operator with constant coefficients ( here we use D to denote −
i ∂) , then for any u ,

P(D )u = P( ξ) û . ( 46)

6 . Remember that the Fourier transform of an integrable function f is defined as

f̂ ( ξ) = ( 2 π) − n/ 2
∫

R d

e− i ξ · x f (x ) dx. ( 39)

with inverse transform:

f (x ) = ( 2 π) − n/ 2
∫

R d

ei ξ · x f̂ ( ξ) dξ. ( 40)

7. This a c tua l ly make s Ŝ ∈ C∞ . Reca l l tha t the multiplica tion be tween a C∞ function and a distrib ution is we l l-defined.



2. Existence for linear, constant-coefficient PDEs.
Let P(D ) be a differential operator of order m with constant coefficients (Here we define Dj = − i ∂x j ) .

We try to solve the equation

P(D )u = f ( 47)

for f ∈ S ′ . We know that it suffices to find a fundamental solution G which solves

P(D )G = δ. ( 48)

Now we take the Fourier transform of both sides, and obtain

P( ξ) Ĝ = P(D )G = δ̂ = ( 2 π)
− n/ 2 . ( 49)

Dividing both sides by P( ξ) we have

Ĝ =
( 2 π)

− n/ 2

P( ξ)
. ( 50)

It suffices to show that Ĝ ∈ S ′ , or equivalently, (P( ξ) )
− 1 ∈ S ′ .

The general proof is complicated. Here we will present the idea of an elementary proof for a special
case, that is when f has compact support, following Michael Taylor PDE §3. 1 0. The main steps are the
following.

1 . By choosing a period box large enough, we can extend f periodically. After re-scaling we reduce
the problem to the torus Td .

2 . In this case the Fourier transform becomse Fourier series, and D ′ = S ′ .
3 . G ∈ D ′(T) if and only if G ( k ) grows polynomially.

4. Observe that the solvability of P(D )u = f is the same as P(D + α) v = g where v = e− iα · x u and g =

e− iα · x f . Thus we only need one α such that P( k + α )
− 1 〈 k 〉 −m < ∞ for some m . It suffices to

show P( k + α )
− δ 〈 k 〉 −m < ∞ for some δ > 0 , m > 0 .

5 . For a polynomial P( ξ) not identically zero, its zeroes are curves. One can show that there is δ1 > 0
such that ∫

Rd
| P( ξ) | − δ < ∞ . ( 51 )

for all 0 < δ < δ1 .

6 . Let Q ( ξ) = | ξ | 2m P
(

ξ

| ξ | 2
)
. Then Q is a polynomial and we obtain δ2 . Take δ = min ( δ1 , δ2 ) .

7 . We have
∫

| ξ | > 1
| P( ξ) | − δ | ξ | − 2 d

dξ =

∫

| η | 6 1

∣∣∣∣∣ P
(

η

| η | 2
) ∣∣∣∣∣

− δ

dη

=

∫

| η | 6 1
| η | 2mδ | Q ( η) | − δ dη

6
∫

| η | 6 1
| Q ( η) | − δ dη < ∞ . ( 52 )

8 . Therefore ∫

06 α i6 1

∑

k ∈ Z d
| P ( k + α) | − δ 〈 k 〉 − 2 d 6

∫

Rd
| P( ξ) | − δ | ξ | − 2 d

dξ < ∞ . ( 53)

Consequently we can find α such that the desired bound holds.

Remark 26. From the proof we see that when f ∈ C0
∞ , the solution u also belongs to C0

∞ .



3. Elliptic PDEs with constant coefficients .
Recall that P(D ) is elliptic if and only if

| P( ξ) | > C | ξ | m ( 54)
for large ξ . We consider

P(D )u = f ( 55)

for such P(D ) . It turns out that we can find E ∈ S ′ which is smooth everywhere except the origin, rapidly
decreasing at ∞ , such that

P(D )E = δ + w ( 56)

where w ∈ S
(
Rd
)
. This E is called a parametrix for P(D ) .

Now we have

u = ( δ + w ) ∗ u − w ∗ u = (P(D )E ) ∗ u − w ∗ u = E ∗ (P(D )u) − w ∗ u = E ∗ f − w ∗ u. ( 57)

Definition 27. ( Singular support) The singular support of a general distribution u ∈ D ′
(
Rd
)
is the

smallest se t K such that u is smooth on Rd \K (read: u can be identified with a smooth function on
Rd \K). This set is denoted

sing supp u. ( 58)

Example 28. We have
sing supp δ = { 0} . ( 59)

One can show that sing supp ( f ∗ g) ⊂ sing supp ( f ) + sing supp( g) . In particular, for the parametrix E , we
have

sing supp (E ∗ f ) ⊂ sing supp f . ( 60)

Since w ∗ u ∈ C∞ , we have established

Proposition 29. For any u ∈ D ′
(
Rd
)
so lving P(D )u = f, ifP(D ) is el liptic , then

sing supp u ⊂ sing supp f . ( 61 )

Further readings.
• Michael Taylor, Partial Differential Equations , Vol. 1 , Chap. 3, Springer-Verlag.
• Joel Smoller, Shock Waves and Reaction-Diffusion Equations , Chap. 7, Springer-Verlag.

Exercises.
Exercise 1 . Show that

lim
n↗∞

sin (n x ) = 0 ( 62 )
in D ′ (R) , but that

lim
n↗∞

sin2 (n x ) � 0 . ( 63)

This is the paradigm example in understanding weak convergence and homogenizat ion theory. Hint : the first part follows
directly from the so-called Riemann-Lebesgue Lemma.

Exercise 2 . Find the distributional derivatives of the following functions.

1 . f ( x ) = ln | x | , x ∈ R .

2 . f ( x ) =

{
f1 (x ) x > 0
f2 (x ) x < 0

, x ∈ R , f1 , f2 ∈ C∞ .

Exercise 3 . Show that the general solution of x y ′ = 0 is c1 + c2 H( x) where H is the Heaviside function. Note that x y ′

is the product of a C∞ function and a distribution. Hint: F irst show that for φ ∈ C0
∞ which vanishes at the origin, φ/x ∈

C0
∞ too, then show that y ′ = c δ for some constant c .

Exercise 4. Let u( x , t) = f ( x + t) where f is any locally integrable function on R . Then u ∈ D ′
(
R2
)
. Show that u

solves the wave equation ut t − ux x = 0 in the sense of distributions.

Exercise 5 . Let φ ∈ C0
∞ (R) satisfy

∫
R
φ = 1 . Define

φn = n φ(n x ) . ( 64)
P rove that φn→ δ in D ′ .
Exercise 6 . Prove that if φ vanishes in a neighborhood of the support of T ∈ D ′ , then T( φ) = 0 . Would it suffice if φ
vanishes on the support of T? Hint: use “part it ion of unity”.


