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Introduction

1 . Examples of PDEs.

1 . 1 . PDEs from physics.
“PDE arose in the context of the development of models in the physics of continuous media,

e. g. vibrating strings, elasticity, the Newtonian gravitational field of extended matter, electro-
statics, fluid flows, and later by the theories of heat conduction, electricity and magnetism. ”1

Example 1 . Laplace’ s equation.

4u = 0 . ( 1 )

where

4 ≡ ∂x 1 x 1 + � + ∂x dxd . ( 2 )

is the Laplacian. When the right hand side is not 0 , that is

( − )4u = f ( 3)

It’ s called Poisson’ s equation.

− First studied by Laplace in his work on gravitational potential fields around 1 780.

Example 2. Heat equation.

ut − D 4u = 0 . ( 4)

Here D is the thermal diffusivity of the material and u is the ( absolute) temperature. It models
the convection of heat through some material.

− Introduced by Fourier in his memoir Théorie analytique de la chaleur ( 1 81 0 – 1 822) .

− By writing the equation as

ut − ∇ · (D ∇u) = 0 , ( 5)

it becomes a conservation law.

Example 3. Wave equation.

�u ≡ ut t − 4u = 0 . ( 6)

Where the operator ∂t t − 4 is often denoted � and called the “D’Alembertian”.

− d = 1 : Introduced by d’Alembert in 1 752 modeling a vibrating string.

− d = 2 , 3 : Euler ( 1 759) , Bernoulli ( 1 762) , small amplitude sound waves.

Remark 4. The above three equations are among the first PDEs studied and understood by
mathematicians2 . Some what mysteriously, the three operators 4 , ∂t − 4 , and � turned out to
be ubiquitous. As a consequence, a solid understanding of them (and their generalizations) is
fundamental in the study of PDEs.

Other examples of equations arising from physics are

Example 5. Linear transport equation.

ut + b · ∇u = ut +
∑

i= 1

d

bi ux i = 0 . ( 7)

Here u can be the density of certain substance, and b = b(x , t) is the velocity of the “stream”
which carries the substance around.

1 . B rezis-Browder, Partia l differentia l e qua tions in the 20th century .
2 . Many other equations were introduced around the same time, for example the Euler/Navier-Stokes equa-

t ions modeling incompressible fluids and the Monge-Ampère equation arising from optimal planning of trans-
portat ion. Most of these other equations turned out to be much harder than the three “basic” equations.



Example 6. Schrödinger’ s equation.

i ~ ut = − ~2

2 m
4u + V (x , u) . ( 8)

It describes the evolution of the probability density of a particle subject to a potential V .

Remark 7. The “transport” operator ∂t + b · ∇ , and the Schrödinger operator − i ∂t − 4 are
other examples of fundamental operators in PDE theory.

Example 8. Incompressible Navier-Stokes equations

ut + u · ∇u = − ∇p+ ν 4u , div u = 0 . ( 9)

When the viscosity ν = 0 , we have the incompressible Euler equations.

− Note the appearance of the heat operator and the transport operator. In fact, most pro-
gress in the study of the Navier-Stokes equation comes from understanding of these two
operators as well as the interaction between them.

− The term − ∇p appears as a Lagrangian multiplier of the constraint div u = 0 .

− The Euler equations were proposed by L. Euler in 1 755 , the Navier-Stokes equations were
proposed by Navier ( 1 822–27) , Poisson ( 1 831 ) , and Stokes ( 1 845) as a more realistic
model of incompressible fluids.

− The Navier-Stokes/Euler equations are still poorly understood today. 3

Example 9. Boltzmann equation.

ft + v · ∇xf = Q ( f , f ) x ∈ Rd , v ∈ Rd , t > 0 . ( 1 0)

The unknown function f corresponds at each time t to the density of particles at the point x
with velocity v . Q ( f , f ) represents interaction between particles. Q is a quadratic operator, the
underlying assumption to this is that interaction between more than three particles can be
neglected.

One can show that under natural assumptions, the Navier-Stokes equations can be obtained
from the Boltzmann equation through averaging the velocity v out4 .

Example 1 0. 1D Gas Dynamics

vt − ux = 0 ( 1 1 )
ut + px = 0 ( 1 2 )

St = 0 ( 1 3)

where v = ρ− 1 with ρ the density, p is the pressure, u the velocity, and S the entropy. p is
related to the other unknowns by the equation of state:

p= p( v , S ) . ( 1 4)

This is an example of the general system of 1 D conservation laws

ut + F (u) x = 0 ( 1 5)

if we take u =



v
u
S


 and F ( v , u , S ) =



− u

p( v , S )
0


 .

3 . From C lay institute website ( http: / /www. claymath . org/millennium/Navier-Stokes_ Equations/ ) : “Waves
follow our boat as we meander across the lake, and turbulent air currents follow our flight in a modern jet . Math-
ematicians and physicists believe that an explanation for and the predict ion of both the breeze and the turbu-
lence can be found through an understanding of solutions to the Navier-S tokes equations. A lthough these equa-
t ions were written down in the 1 9th Century, our understanding of them remains minimal. The challenge is to
make substantial progress toward a mathematical theory which will unlock the secrets hidden in the Navier-
S tokes equations. ”

4 . F . Golse, L . Saint-Raymond, The Navie r-Stokes lim it of the Bo ltzmann equa tion for bounded co l lision
kerne ls , Invent. Math. 1 55 ( 2004) , 8 1 – 1 61 .



Remark 1 1 . Conservation laws is a major research area during the cold war, due to its appli-
cations in aerodynamics. On the other hand, methods and understanding developed through the
study of conservation laws have been successfully applied to other PDEs and even other fields.
In particular, numerical schemes designed for computing the solutions of conservation laws
proved very useful in image processing.

Example 1 2 . Korteweg-de Vries (KdV) equation

ut − 6 u ux + ux x x = 0 . ( 1 6)

− Introduced in 1 896 as a model for solitary water waves.

− Can be derived from shallow water equation.

− Turned out to be related to algebraic geometry.

− Here we meet a new operator ∂t + ∂x x x . It is the fundamental operator modeling disper-
sive phenomena ( in comparison, the heat operator ∂t + ∂x x represents the diffusive phe-
nomena) . The two operators have totally different properties. 5

Example 1 3. Maxwell’ s equations.

Et = curlB ( 1 7)
Bt = − curlE ( 1 8)

divE = 4 π ρ ( 1 9)
divB = − 4 π j ( 20)

where E =



E1

E2

E3


 is the electric field and B =



B1

B2

B3


 is the magnetic induction field.

− Combining the Maxwell’ s equations and the Navier-Stokes equations one obtains the so-
called Magneto-hydrodynamics equations (MHD) , which plays an important role in
understanding the local universe ( for example the solar winds) around us.

− If we take the time derivative of the first two equations, we obtain

Et t = curl( curlE ) = 4E + 4 π∇ρ ( 21 )
Bt t = curl( curlB ) = 4B − 4 π ∇j ( 22 )

and thus revealed the “hidden” wave equations in the system.

Example 1 4. The Einstein field equation of General Relativity for the curvature of the metric
( gi j) of space-time:

Ri j − 1

2
gi jR = κ Ti j i , j = 0 , 1 , 2 , 3 . ( 23)

κ is a constant, Ti j is the energy-momentum tensor,

Ri j ≡
∑

k= 0

3
(

∂

∂xk
Γ i j
k − ∂

∂x j
Γ i k
k +

∑

l= 0

3 (
Γ l k
k Γ i j

l − Γ l j
k Γ i k

l
)
)

( 24)

is the Ricci curvature. Here

Γ i j
k ≡ 1

2

∑

l= 0

3

gk l
(

∂

∂x i
gjl +

∂

∂x j
gi l − ∂

∂x l
gi j

)
( 25)

(
gi j

)
≡ ( gi j)

− 1 ( 26)
and

R≡
∑

i , j= 0

3

gi jRi j ( 27)

is the scalar curvature.

5 . Anyone familiar with the theory of weak solutions for the viscous Burgers equation ut + u ux − ux x = 0 can
take a look at the three papers in the early 80s by P . D. Lax and C . D. Levermore to get some idea of how dif-
ferent the two operators are.



1 . 2 . PDEs from other sciences.

Example 1 5. Scalar reaction-diffusion equation

ut − 4u = f ( u) ( 28)

or reaction-diffusion systems

ut − 4u = F (u) . ( 29)

One can also put in a transport ( or conservation law) term:

ut + b · ∇u − 4u = F (u) , ( 30)

ut + ∇ · ( b ⊗ u) − 4u = F (u) . ( 31 )

Such equations appear in Chemistry and Mathematical Biology. The velocity b can be given or
unknown. In the latter case b is often related to u via some nonlocal operator, for example

b(x , t) =

∫
∇K(x − y) u( y , t) dy ( 32 )

where K( z ) = e− | x | 6 which has been extensively studied recently.

Example 1 6. Porous medium equation

ut − ∇ · ( uγ ∇u) = 0 . ( 33)

where u is the density of the substance being transported in a porous medium. The above equa-
tion is in fact a conservation law ut − ∇ · ( b u) = 0 where the velocity b depends on u locally due
to equation of state and the so-called Darcy Law governing motion of fluids in porous media. 7

This equation can also be studied from the heat equation point of view ( remember that the
heat equation ut − D 4u = 0 can be written as ut − ∇ · (D ∇u) = 0 ) . It indeed share many good
properties with the heat equation ( e. g. maximum principle) .

Example 1 7. Black-Scholes equation:

ut +
1

2
σ2 x2 ux x + r x ux − r u = 0 . ( 34)

Here u = u(x , t) , x > 0 , t > 0 is the price of a European option. 8

A second’ s inspection reveals that this equation is a combination of fundamental opeators.

6 . A . L . Bertozzi and T . Laurent, Finite - time b low-up of so lutions of an aggrega tion e quation in Rn ,
Comm. Math. Phys. , 274, p. 71 7-735 , 2 007 .

7 . See e. g. D. G . Aronson, The porous medium equa tion , Lecture Notes in Mathematics 1 224, 1 –45 , 1 986 .

8 . There is a expository art icle explaining this equation in Terence Tao’ s blog: http: / / terrytao. word-
press . com/2008/ 07/ 01 / the-black-scholes-equation/ .



1 . 3. PDEs from engineering.

Example 1 8. Monge-Ampère equation

det
(
D2u

)
= f . ( 35)

− First studied by Gaspard Monge in 1 784 and later by André-Marie Ampère in 1 820;

− The solution gives the optimal way of transporting material from one site to the other;

− It also arise naturally in several problems in Riemannian geometry, conformal geometry,
and CR geometry. In particular, a surface u = u( x , y) with prescribed Gauss curvature
K(x , y) satisfies

det
(
D2u

)
= f ≡ K(x , y)

(
1 + ux

2 + uy
2
) 2
. ( 36)

Remark 1 9. The operator det
(
D2 ·

)
seems unrelated to any of the previous operators. How-

ever in fact there is the following link between the Monge-Ampere equation and the Poisson
equation, which can be written as

tr
(
D 2u

)
= f . ( 37)

Thus the Monge-Ampère equation is Πλ i = f while the Poisson equation is
∑

λ i = f , where λ i ’ s
are the eigenvalues of the matrix D2u . From this view-point, it makes sense to study equations
obtained by taking other invariants of the matrix D 2u . Interestingly, all these equation share
many common properties.

1 . 4. PDEs from other branches of mathematics .

Example 20. The Cauchy-Riemann equation

fz̄ =
1

2
(∂x + i ∂y) f = 0 . ( 38)

If we write f = u + i v , then the equation becomes a system

ux = vy , uy = − vx . ( 39)

Now assuming u , v ∈ C2 and taking derivatives, we arrive at

4u = 4v = 0 . ( 40)

Example 21 . Minimal surface equation.

∇ ·
(

∇u(
1 + | ∇u | 2

) 1 / 2

)
= 0 . ( 41 )

It is obtained as the Euler-Lagrange equation of minimizing the area of a surface given by u =
u(x ) :

S (u) =

∫ (
1 + | ∇u | 2

) 1 / 2
dx . ( 42 )

Example 22. Ricci flow.

gt = − 2 Ric , g( 0) = g0 ( 43)

where g is a Riemannian metric and Ric is the so-called Ricci curvature.

− g evolves toward a uniform metric after re-scaling;

− This equation has some similar properties with the heat equation.

− The solution of the Poincaré Conjecture is based on understanding of this equation.



2. General formulation and terminologies.
In general, a PDE is an equation of the form

F
(
Dmu(x ) , Dm− 1u(x ) , � , D u(x ) , u(x ) , x

)
= 0 x ∈ Ω ⊆ Rd ( 44)

where u is the unknown ( can be scalar or vector) and Dku is a shorthand for the collection of all
kth derivatives of u . The highest order of the derivatives involved is called the “order” of the
PDE.

• A PDE is called linear if F is linear in u and its derivatives. In this case it has the form
∑

| α | 6m
aα (x ) Dαu = f (x ) . ( 45)

Here α = (α1 , � , αd) is a multi-index, | α | = | α1 | + � + | αd | , Dα =
∂ | α |

∂α 1 x 1
� ∂αdx d

.

• A PDE is called quasilinear if F is linear in the highest order derivatives of u , or equiva-
lently, the equation has the form

∑

| α | =m
aα
(
Dk − 1u , � , D u , u , x

)
Dαu + a0

(
Dk − 1u , � , D u , u , x

)
= 0 . ( 46)

When all aαs only depend on x , the PDE is called semilinear . The general form for semi-
linear PDEs is

∑

| α | =m
aα ( x) Dαu + a0

(
Dk − 1u , � , D u , u , x

)
= 0 . ( 47)

• A PDE is called fully nonlinear if it depends nonlinearly upon the highest order deriva-
tives.

3. Well-posedness.
The well-posedness of a differential equation (ODE, PDE) has three aspects.

a) Existence: The problem has a solution.

b) Uniqueness: There is only one solution.

c) Stability: The solution depends continuously on the data given in the problem.

Remark 23. c) is especially important when the equation has its origin in other sciences.

Remark 24. In the following lectures we will see that one can define the meaning of “a func-
tion u solves the PDE” in more than one ways. There are two criteria to judge which definition
we should take:

1 . How relevant is the solution to the original physical ( chemical, biological, etc. ) pro-
cess/phenomenon which leads to the PDE;

2 . Does this definition of solutions makes the PDE well-posed.

The ideal situation ( and people’ s expectation) is that one ( the right) definition will simultane-
ously satisfy 1 . and 2 . . An example is the theory of conservation laws.

For difficult PDEs which still confuse researchers, different mathematicians may have dif-
ferent ideas as to which of 1 and 2 should guide the study.

Remark 25. The study of well-posedness of nonlinear equations naturally leads to the study of
regularity of linear PDEs with non-constant coefficients.



Further reading.
The following are survey articles of PDE theory as a whole.

• Haïm Brezis, Felix Browder, Partial differential equations in the 20th century , Advances
in Mathematics 1 35 ( 1 998) 76-1 44.

• Luis Nirenberg, Partial differential equations in the first half of the century , in Develop-
ment of Mathematics: 1 900 – 1 950 , Jean-Paul Pier ed. , Birkhäuser.

• Sergiu Klainerman, PDE as a unified subject , GAFA, Geom. funct. anal. , Special
Volume, 2000.

Exercises.

Exercise 1 . List two PDEs, either from the above examples or from your own reading, that interest you
most. G ive a concise introduction ( where does the equation come from, main ingredients of the derivation of
the equation , why is the equation important , etc. ) for each. ( 5 pts for each PDE)

Exercise 2 . (Well-posedness for ODE) We develop a complete theory of well-posedness for the init ial
value problem of ODE. Consider an ODE of the form

u̇ = f ( t , u) , u( t0 ) = u0 . ( 48)

where f is defined on D ⊆ R × Rd and ( t0 , u0 ) ∈ D . We say u is a classical solution if u ∈ C1 .

a) ( 2 pts) Existence I: P rove the following theorem.

Theorem. A ssume that f is continuous in t and uniformly Lipschitz in u , then there exists an
inte rva l

(
t− , t+

)
3 t0 , such tha t a t lea st one c la ssica l so lution u ∈ C1

(
t− , t+

)
exists.

Remark. The proof st ill works when Rd is replaced by any Banach space. As a consequence, it can
be applied to many PDEs.

b) ( Optional) Existence II: P rove the following theorem.

Theorem. The “uniform Lipschitz” condition on f in the above theorem can be replaced b y f ∈ C (D ) .

Hint: On any compact subset of D , approximate f uniformly by Lipschitz functions fn , let un be a
solution of the corresponding ODE, then use Ascoli-Arzela Theorem ( a uniformly bounded, equicontin-
uous sequence has a subsequence which converges uniformly) .

c) Uniqueness :

i . ( 2 pts) Show that the solution obtained in a) is in fact the only solution for the initial value
problem.

ii . ( 2 pts) Construct an example to show that under the condition of the theorem in b) , unique-
ness may fail.

i ii . ( Optional) Show that uniqueness st ill holds when the “uniform Lipschitz” condit ion on f in a)
is replaced by the following weaker “Osgood” condit ion:

| ( f ( t , u) − f ( t , v ) ) · (u − v ) | 6 g( | u − v | ) ( 49)

where the modulus g sat isfies ∫

0

δ 1
g( r)

dr = ∞ ( 5 0)

for any δ > 0 .

d) ( 2 pts) Continuous dependence on initial value:
P rove that the unique solution obtained in a) depends continuously on ( t0 , u0 ) . Note that contin-

uous dependence on data automatically fails when the solution is not unique.

e) ( 2 pts) Different definit ions of solution, regularity:
One can integrate and obtain the following “weak” formulation

u( t) = u0 +

∫

t 0

t

f ( s , u( s) ) ds. ( 5 1 )

We say u ∈ C( I) is a “weak solution” of the ODE if it sat isfies this integral formulation. P rove that ,
u ∈ Cm if f ∈ Cm− 1 ( as a function of ( t , u) ) for m > 1 .


