
Burnside's lemma
� Burnside's Lemma:

� X: A collection of objects;

� G: A group of operations on X;

� If two objects x; y 2X are viewed as the same when y= g x for some g 2G, then the number
of �truly di�erent� objects is

1
jGj

X
g2G
jXg j (1)

where Xg= fx2Xj g x=xg.
� Generalizes Polya's theory; Applies to more problems.

Example 1. How many ways are there to put 10 identical balls into 3 identical boxes, such that none of
the boxes has more than 5 balls?

Solution. We mark the boxes 1; 2; 3 and set

X := fDi�erent ways putting 10 identical balls into 3 di�erent boxes so that no box has more than 5g: (2)

The symmetry group is

S3= f(1)(2)(3); (12)(3); (13)(2); (23)(1); (123); (132)g: (3)
We calculate:

� jXij= jX j= the number of solutions to x1+ x2+ x3= 10; 06 xi6 5. We solve it by the method of
generating functions. As the balls are identical, the generating function is ordinary,

A(x) = (1+x+ ���+x5)3

=
(1¡x6)3
(1¡x)3

= (1¡ 3 x6+3x12¡x18)
X
n=0

1
(n+2) (n+1)

2
xn: (4)

The coe�cient for x10 is then

(10+2) (10+1)
2

¡ 3 (4+2) (4+1)
2

= 66¡ 45= 21: (5)

� jX(12)(3)j= the number of solutions to x1+ x2+ x3= 10; 06 xi6 5 that is unchanged after switching
x1 ! x2. Clearly this means x1= x2. So jX(12)(3)j= the number of solutions to x1+ x2+ x3= 10;
06xi6 5; x1=x2. This is simple enough to just count, but let's solve it by generating functions.

The problem is equivalent to

2 y1+ y2= 10; 06xi6 5 (6)
which in turn is equivalent to

z1+ z2= 10; 06 z16 10; z1 even; 06 z26 5: (7)

The generating function is then

A(x) = (1+ x2+x4+ ���+x10) (1+ x+ ���+x5)

=
1¡x12
1¡x2

1¡x6
1¡x

= (1¡x12) (1¡x6) 1
(1+ x) (1¡x)2 : (8)

We apply the method of partial fraction:

1
(1+ x) (1¡x)2 =

A
1¡x +

B
(1¡x)2 +

C
1+ x

(9)
which leads to

1=A (1¡x2) +B (1+x)+C (1¡x)2: (10)



Setting x= 1 we have B = 1/2. Setting x = ¡1 we have C = 1/4. Finally comparing the constant
terms we have 1=A+B+C so A=1/4. Therefore

A(x)= (1¡x6¡x12+x18)
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The coe�cient of x10 is then �
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� Clearly jX(23)(1)j= jX(13)(2)j= jX(12)(3)j=3.

� jX(123)j= the number of solutions to x1+ x2+ x3= 10; 06 xi6 5 that is unchanged after switching
x1!x2; x2!x3; x3!x1. Clearly this requires x1=x2=x3. So jX(123)j=0.

� jX(132)j=0 for the same reason.

Therefore the answer is 21+3+3+3+0+0

6
=5 di�erent ways.

Solving recurrence relations
Note. Only ordinary generating functions will be involved in the �nal exam regarding recurrence relations.

Example 2. Solve hn=hn¡1+n3; h0=0.

Solution. Let H(x) :=
P

n=0
1 hnx

n. Then we have

H(x) = h0+
X
n=1

1

hnx
n

=
X
n=1

1

(hn¡1+n3) xn

=
X
n=0

1

hnxn+1+
X
n=1
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n3xn

= xH(x)+
X
n=1

1

n3xn: (13)

To �nd
P

n=1
1

n3xn we notice that
x fx [x (xn)0]0g0=n3xn: (14)

Therefore X
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x fx [x (xn)0]0g0

= x
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(1¡x)4

=
x+4 x2+x3

(1¡x)4 : (15)

Thus we have

H(x)=
x+4 x2+x3

(1¡x)5 =(x+4x2+x3)
X (n+4) (n+3) (n+2) (n+1)

4!
xn: (16)

Thus the coe�cient for xn is

hn=
(n+3) (n+2) (n+1)n

4!
+ 4

(n+2) (n+1)n (n¡ 1)
4!

+
(n+1)n (n¡ 1) (n¡ 2)

4!
=
n2 (n+1)2

4
: (17)



More Examples

Example 3. How many paths are there from one corner of a cube to the opposite corner, each possible path
being along three of the twelve edges of the cube?

Solution.

1 2

34

5 6

7
8

If we would like to reach 7 from 1 in 3 steps, then necessarily after the �rst step we have to be at one of
2,4,5; after the second step we have to be at one of 3,6,8. We have three choices in the �rst step, and after
the �rst step we have two choices. After the second step we have only one choice. Therefore the total number
of di�erent paths is 3� 2� 1=6.

Example 4. How many ways are there to distribute 18 toys to six children if each child receives a toy and
the 18 toys can be divided into three groups of 6, 7, 5 each, and the toys within each group are identical?

Solution. The answer is:

jA0j ¡ jA1[ ��� [A6j (18)

where

A0= fways distributing 18 toys to 6 childreng (19)

and

Ai= fThe ith child receives no toyg (20)

We see that

jA0j=N01�N02�N03 (21)

where N01 is the number of ways distributing 6 identical toys to 6 children, N02 the number of ways
distributing 7 identical toys to 6 children, and N03 the number of ways distributing 5 identical toys to 6
children. Thus

jA0j=
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�
: (22)

On the other hand, jA1[ ��� [A6j can be calculated through inclusion-exclusion. We have
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�10
4

�
�
�11
4

�
�
�
9
4

�
; (23)
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jAi\Aj \Ak\Al\Asj=1: (27)



Consequently
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Example 5. In how many ways can 25 di�erent books be assigned to �ve di�erent bookshelves if the order
of the books on each shelf is considered important?

Solution. We mark the bookshelves 1,2,3,4,5. The reasonable assumption is that the number of books on
each bookshelf is �xed, then putting the �ve bookshelves in a line (1�5 from left to right) we see that each
distribution of the books corresponds to one permutation of the 25 books. So there are 25! di�erent ways.

Remark. If the number of books on each bookshelf is not �xed, then for each single permutation of the 25
books there are C(24; 4) di�erent distributions (if we do not allow empty bookshelves) or C(29; 4) di�erent
distributions (if we allow empty bookshelves). So the �nal answer would be

C(24; 4)� 25! or C(29; 4)� 25!: (29)
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