About final

- About 8-10 problems.
- Covers everything.
- Basic counting (Before Midterm 1): About 35\%;
- Advanced counting (Between midterms): About 40\%;
- Graph theory and design theory: About 25%.

To review

Please review lecture notes/homeworks/midterms, and let me know any topics/problems that you want me to cover in the two lectures next week.

- For material before Midterm 1, please see review lectures on Jan. 30 and Feb. 1;
- For material before Midterm 2, please see review lectures on Mar. 13 and Mar. 15;
- For graph theory, please see Mar. 31 lecture.
- For design theory:
- Definition of (v, b, r, k)-design and (v, b, r, k, λ)-design.
- $\quad v$: Number of symbols;
- $\quad b$: Number of blocks;
- $\quad r$: How many times each symbol appears in the array;
- $\quad k$: How many symbols in each block;
- $\quad \lambda$: How many times each pair of symbols appear, that is the number of blocks each pair of symbols are in.
- Necessary conditions:
- For (v, b, r, k)-designs: Two ways of counting symbols must give the same answer.

$$
\begin{equation*}
v r=b k . \tag{1}
\end{equation*}
$$

- For (v, b, r, k, λ)-designs: Two ways of counting pairs of symbols must give the same answer.

$$
\begin{equation*}
\lambda(v-1)=r(k-1) . \tag{2}
\end{equation*}
$$

- For Latin squares:
- Definition of $n \times n$ Latin squares.
- Simple ways to construct Latin squares.
- Definition of orthogonal Latin squares.

