Generating Functions

- Generating function is a method to systematically study a sequence of numbers a_{0}, a_{1}, \ldots. Here a_{0}, $a_{1}, \ldots, a_{n}, \ldots$ are answers to combinatoric problem with a parameter n involved. There are two popular types of generating functions,
- the ordinary generating function

$$
\begin{equation*}
A(x):=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{1}
\end{equation*}
$$

and

- the exponential generating function

$$
\begin{equation*}
E(x):=a_{0}+a_{1} x+\frac{a_{2}}{2!} x^{2}+\frac{a_{3}}{3!} x^{3}+\cdots=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n} . \tag{2}
\end{equation*}
$$

- For occupancy problems, identical balls \Longrightarrow use ordinary generating function, different balls \Longrightarrow use exponential generating function.
- Once we have the generating function, the numbers a_{n} can be obtained through Taylor expansion of the function.
- For ordinary generating functions, often we need to do Taylor expansion of a rational function. This is done through
i. Partial fraction;
ii. The (most important) expansion

$$
\begin{equation*}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \tag{3}
\end{equation*}
$$

and the expansions for $\frac{1}{(1-x)^{k}}$ obtained from differentiating (3).

- To determine the generating function of a problem, one can
- try to write down the generating function directly, or
- try to solve the generating function from a recurrence relation of the a_{n} 's.
- Examples.

Example 1. ${ }^{1}$ Starting with a set of n elements $\{a, b, c, \ldots\}$, consider the set of combinations, with repetition allowed, where each element appears an even number of times. For example aaccdddd is a legal combination, but $a a b b b$ is not. Let the number of such combinations with k elements be a_{k}. Find a_{k} through generating functions if
a) Order does not matter (that is $a a b b b$ is the same as $a b b a b$.)
b) Order matters (that is $a a b b b$ is not the same as $a b b a b$ while both are legal.)

Solution.

a) We see that the problem is equivalent to putting k identical balls into n distinct boxes, thus a_{k} is the number of solutions to

$$
\begin{equation*}
x_{1}+\cdots+x_{n}=k \tag{4}
\end{equation*}
$$

[^0]with the extra requirement that each x_{i} is even. Therefore the generating function is
\[

$$
\begin{align*}
A(x)=\left(1+x^{2}+x^{4}+\cdots\right)^{n} & =\frac{1}{\left(1-x^{2}\right)^{n}} \\
& =\frac{1}{(n-1)!} \sum_{l=0}^{\infty}(l+n-1) \cdots(l+1) x^{2 l} \\
& =\binom{l+n-1}{l} x^{2 l} \tag{5}
\end{align*}
$$
\]

Therefore we have $a_{k}=\binom{l+n-1}{l}$ when k is even and $a_{k}=0$ when k is odd.
b) In this case the problem is equivalent to putting k distinct balls (the k positions) into n distinct boxes (the n symbols), with the further requirement that each box contains an even number of balls. Thus we use exponential generating function:

$$
\begin{align*}
\sum_{k=0}^{\infty} \frac{a_{k}}{k!} x^{k}=E(x) & =\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)^{n} \\
& =\left(\frac{e^{x}+e^{-x}}{2}\right)^{n} \\
& =2^{-n} \sum_{\substack{l=0}}^{n}\binom{n}{l} e^{l x} e^{(n-l)(-x)} \\
& =2^{-n} \sum_{l=0}^{n}\binom{n}{l} e^{(2 l-n) x} \\
& =2^{-n} \sum_{k=0}^{\infty} \frac{\sum_{l=0}^{n}\binom{n}{l}(2 l-n)^{k}}{k!} x^{k} \tag{6}
\end{align*}
$$

Therefore

$$
\begin{equation*}
a_{k}=\frac{\sum_{l=0}^{n}\binom{n}{l}(2 l-n)^{k}}{2^{n}} \tag{7}
\end{equation*}
$$

Example 2. ${ }^{2}$ Find the ordinary generating function for the sequence $\left\{a_{n}\right\}_{n \geqslant 0}$ satisfying

$$
\begin{equation*}
a_{n}=2 a_{n-1}+1, \quad n \geqslant 1, \quad a_{0}=0 \tag{8}
\end{equation*}
$$

and use it to find a_{n}.
Solution. We have

$$
\begin{align*}
A(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{0}+\sum_{n=1}^{\infty} a_{n} x^{n} \\
& =0+\sum_{n=1}^{\infty}\left(2 a_{n-1}+1\right) x^{n} \\
& =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}+\sum_{n=1}^{\infty} x^{n} \\
& =\sum_{n=0}^{\infty} 2 a_{n} x^{n+1}+\frac{x}{1-x} \\
& =2 x A(x)+\frac{x}{1-x} \Longrightarrow A(x)=\frac{x}{(1-x)(1-2 x)} \tag{9}
\end{align*}
$$

Now apply partial fraction:
which gives

$$
\begin{equation*}
\frac{x}{(1-x)(1-2 x)}=\frac{A}{1-x}+\frac{B}{1-2 x} \Longrightarrow x=A(1-2 x)+B(1-x) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
A=-1, \quad B=1 \tag{11}
\end{equation*}
$$

[^1]Therefore

$$
\begin{align*}
\sum_{n=0}^{\infty} a_{n} x^{n} & =A(x) \\
& =\frac{1}{1-2 x}-\frac{1}{1-x} \\
& =\sum_{n=0}^{\infty}(2 x)^{n}-\sum_{n=0}^{\infty} x^{n} \\
& =\sum_{n=0}^{\infty}\left(2^{n}-1\right) x^{n} \tag{12}
\end{align*}
$$

Thus $a_{n}=2^{n}-1$.
Example 3. Find and solve a recurrence relation for the number of ways to make a pile of n poker chips using red, white, and blue chips and such that no two red chips are together.
Solution. We have clearly $a_{1}=3$ and $a_{2}=8$. Now let $n>2$. Consider the color of the top chip. If it is red, then the one below it cannot be red and the remaining $n-2$ chips give a_{n-2} different ways. If it is not red, then the remaining $n-1$ chips give a_{n-1} different ways. Therefore the recurrence relation is

$$
\begin{equation*}
a_{n}=2 a_{n-1}+2 a_{n-2}, \quad n>2, \quad a_{1}=3, a_{2}=8 \tag{13}
\end{equation*}
$$

We have

$$
\begin{align*}
A(x) & :=\sum_{n=1}^{\infty} a_{n} x^{n} \\
& =3 x+8 x^{2}+\sum_{n=3}^{\infty} a_{n} x^{n} \\
& =3 x+8 x^{2}+\sum_{n=3}^{\infty}\left(2 a_{n-1}+2 a_{n-2}\right) x^{n} \\
& =3 x+8 x^{2}+2 \sum_{n=2}^{\infty} a_{n} x^{n+1}+2 \sum_{n=1}^{\infty} a_{n} x^{n+2} \\
& =3 x+8 x^{2}+2 \sum_{n=1}^{\infty} a_{n} x^{n+1}-6 x^{2}+2 x^{2} A(x) \\
& =3 x+2 x^{2}+2 x A(x)+2 x^{2} A(x) \Longrightarrow A(x)=\frac{3 x+2 x^{2}}{1-2 x-2 x^{2}} \tag{14}
\end{align*}
$$

Solving this using partial fraction gives

$$
\begin{equation*}
a_{n}=\frac{1}{4 \sqrt{3}}\left[(1+\sqrt{3})^{n+2}-(1-\sqrt{3})^{n+2}\right] \tag{15}
\end{equation*}
$$

Example 4. ${ }^{3}$ Given the sequence $\left\{a_{n}\right\}_{n \geqslant 1}$ defined recursively by

$$
\begin{equation*}
a_{n+2}=14 a_{n+1}-a_{n}-4, \quad n \geqslant 1, \quad a_{1}=1, a_{2}=1 \tag{16}
\end{equation*}
$$

Show that a_{n} is a perfect square for all $n \geqslant 1$.
Proof. We have

$$
\begin{aligned}
A(x) & :=\sum_{n=1}^{\infty} a_{n} x^{n} \\
& =x+x^{2}+\sum_{n=3}^{\infty} a_{n} x^{n} \\
& =x+x^{2}+\sum_{n=3}^{\infty}\left(14 a_{n-1}-a_{n-2}-4\right) x^{n}
\end{aligned}
$$

[^2]\[

$$
\begin{align*}
& =x+x^{2}+\sum_{n=3}^{\infty} 14 a_{n-1} x^{n}-\sum_{n=3}^{\infty} a_{n-2} x^{n}-4 \sum_{n=3}^{\infty} x^{n} \\
& =x+x^{2}+14 \sum_{n=2}^{\infty} a_{n} x^{n+1}-\sum_{n=1}^{\infty} a_{n} x^{n+2}-4 x^{3} \sum_{n=0}^{\infty} x^{n} \\
& =x+x^{2}-14 x^{2}+14 \sum_{n=1}^{\infty} a_{n} x^{n+1}-x^{2} A(x)-\frac{4 x^{3}}{1-x} \\
& =x-13 x^{2}+14 x A(x)-x^{2} A(x)-\frac{4 x^{3}}{1-x} . \tag{17}
\end{align*}
$$
\]

Therefore

$$
\begin{equation*}
A(x)=\frac{x-13 x^{2}}{1-14 x+x^{2}}-\frac{4 x^{3}}{\left(1-14 x+x^{2}\right)(1-x)} \tag{18}
\end{equation*}
$$

This gives

We apply partial fraction expansion to the latter term. First note that

$$
\begin{equation*}
1-14 x+x^{2}=[(7+4 \sqrt{3})-x][(7-4 \sqrt{3})-x] \tag{20}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{8 x^{2}}{\left(1-14 x+x^{2}\right)(1-x)}=\frac{A}{(7+4 \sqrt{3})-x}+\frac{B}{(7-4 \sqrt{3})-x}+\frac{C}{1-x} \tag{21}
\end{equation*}
$$

Solving this gives

$$
\begin{equation*}
A=\frac{(7+4 \sqrt{3})^{2}}{12+6 \sqrt{3}}, \quad B=\frac{(7-4 \sqrt{3})^{2}}{12-6 \sqrt{3}}, \quad C=-\frac{2}{3} \tag{22}
\end{equation*}
$$

Now notice that

$$
\begin{equation*}
(2 \pm \sqrt{3})^{2}=7 \pm 4 \sqrt{3} \tag{23}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
A=\frac{1}{6}(2+\sqrt{3})^{3}, \quad B=\frac{1}{6}(2-\sqrt{3})^{3}, \quad C=-\frac{2}{3} . \tag{24}
\end{equation*}
$$

Therefore

$$
\begin{align*}
A(x) & =\frac{1}{3} \frac{x}{1-x}+\frac{1}{6}\left[\frac{(2+\sqrt{3})^{3} x}{(2+\sqrt{3})^{2}-x}+\frac{(2-\sqrt{3})^{3} x}{(2-\sqrt{3})^{2}-x}\right] \\
& =\frac{1}{3} \frac{x}{1-x}+\frac{1}{6}\left[\frac{(2+\sqrt{3}) x}{1-(2-\sqrt{3})^{2} x}+\frac{(2-\sqrt{3}) x}{1-(2+\sqrt{3})^{2} x}\right] \\
& =\frac{x}{3} \sum_{n=0}^{\infty} x^{n}+\frac{x}{6} \sum_{n=0}^{\infty}\left[(2+\sqrt{3})(2-\sqrt{3})^{2 n}+(2-\sqrt{3})(2+\sqrt{3})^{2 n}\right] x^{n} \\
& =\frac{1}{3} \sum_{n=1}^{\infty} x^{n}+\frac{1}{6} \sum_{n=1}^{\infty}\left[(2-\sqrt{3})^{2 n-3}+(2+\sqrt{3})^{2 n-3}\right] x^{n} . \tag{25}
\end{align*}
$$

Therefore

$$
\begin{align*}
a_{n} & =\frac{1}{6}\left[(2-\sqrt{3})^{2 n-3}+2+(2+\sqrt{3})^{2 n-3}\right] \\
& =\frac{1}{36}\left[(12-6 \sqrt{3})(2-\sqrt{3})^{2 n-2}+2+(12+6 \sqrt{3})(2+\sqrt{3})^{2 n-2}\right] \\
& =\frac{1}{36}\left[(3-\sqrt{3})^{2}(2-\sqrt{3})^{2 n-2}+2+(3+\sqrt{3})^{2}(2+\sqrt{3})^{2 n-2}\right] \\
& =\left[\frac{(3-\sqrt{3})(2-\sqrt{3})^{n-1}+(3+\sqrt{3})(2+\sqrt{3})^{n-1}}{6}\right]^{2} . \tag{26}
\end{align*}
$$

Through binomial expansion we see that the number getting squared is rational (all the $\sqrt{3}$ terms cancel). A rational number square to an integer if and only if it is itself an integer. Therefore a_{n} is a perfect square.

[^0]: 1. http://www.math.ualberta.ca/~isaac/math421/w06/mt_review.pdf.
[^1]: 2. http://www.math.ualberta.ca/~ isaac/math421/w06/fn_review.pdf.
[^2]: 3. http://www.math.ualberta.ca/ \sim isaac/math421/w06/fn_review.pdf.
