
Generating Functions

� Generating function is a method to systematically study a sequence of numbers a0; a1; ::: . Here a0;
a1; :::; an; ::: are answers to combinatoric problem with a parameter n involved. There are two popular
types of generating functions,

� the ordinary generating function
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� the exponential generating function
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� For occupancy problems, identical balls =) use ordinary generating function, di�erent balls
=) use exponential generating function.

� Once we have the generating function, the numbers an can be obtained through Taylor expansion of
the function.

� For ordinary generating functions, often we need to do Taylor expansion of a rational function.
This is done through

i. Partial fraction;

ii. The (most important) expansion
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and the expansions for 1

(1¡x)k obtained from di�erentiating (3).

� To determine the generating function of a problem, one can

� try to write down the generating function directly, or

� try to solve the generating function from a recurrence relation of the an's.

� Examples.

Example 1. 1Starting with a set of n elements fa; b; c; :::g, consider the set of combinations, with
repetition allowed, where each element appears an even number of times. For example aaccdddd is
a legal combination, but aabbb is not. Let the number of such combinations with k elements be ak.
Find ak through generating functions if

a) Order does not matter (that is aabbb is the same as abbab.)

b) Order matters (that is aabbb is not the same as abbab while both are legal.)

Solution.

a) We see that the problem is equivalent to putting k identical balls into n distinct boxes, thus
ak is the number of solutions to

x1+ ���+xn= k (4)
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with the extra requirement that each xi is even. Therefore the generating function is
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Therefore we have ak=
�
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when k is even and ak=0 when k is odd.

b) In this case the problem is equivalent to putting k distinct balls (the k positions) into n distinct
boxes (the n symbols), with the further requirement that each box contains an even number
of balls. Thus we use exponential generating function:X
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Example 2. 2Find the ordinary generating function for the sequence fangn>0 satisfying
an=2 an¡1+1; n> 1; a0=0 (8)

and use it to �nd an.

Solution. We have
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Now apply partial fraction:
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Thus an=2n¡ 1.

Example 3. Find and solve a recurrence relation for the number of ways to make a pile of n poker
chips using red, white, and blue chips and such that no two red chips are together.

Solution. We have clearly a1=3 and a2=8. Now let n>2. Consider the color of the top chip. If it is
red, then the one below it cannot be red and the remaining n¡2 chips give an¡2 di�erent ways. If it
is not red, then the remaining n¡1 chips give an¡1 di�erent ways. Therefore the recurrence relation is

an=2 an¡1+2 an¡2; n> 2; a1=3; a2=8: (13)
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Solving this using partial fraction gives
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Example 4. 3Given the sequence fangn>1 de�ned recursively by

an+2= 14 an+1¡ an¡ 4; n> 1; a1=1; a2=1: (16)

Show that an is a perfect square for all n> 1.

Proof. We have
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We apply partial fraction expansion to the latter term. First note that
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Solving this gives
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Through binomial expansion we see that the number getting squared is rational (all the 3
p

terms
cancel). A rational number square to an integer if and only if it is itself an integer. Therefore an is a
perfect square. �
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