
Example 1. Let an+2=3 an+1¡ 2 an for n> 0, and let a0=0, a1=1. Find an explicit formula for an.

Solution. Note that the recurrence relation can be written as

an=3 an¡1¡ 2 an¡2; n> 2: (1)

Setting A(x)=
P

n=0
1 anx

n we have

A(x) = a0+ a1x+
X
n=2

1

anx
n

= x+
X
n=2

1

(3 an¡1¡ 2 an¡2)xn

= x+3x
X
n=2

1

an¡1x
n¡1¡ 2x2

X
n=2

1

an¡2x
n¡2

= x+3x
X
n=1

1

anx
n¡ 2 x2

X
n=0

1

anx
n

= x+3x
X
n=0

1

anx
n¡ 2 x2

X
n=0

1

anx
n

= x+3xA(x)¡ 2 x2A(x): (2)

Thus

A(x)=
x

1¡ 3x+2x2
; (3)

from which we can apply partial fraction expansion to obtain an=2n¡ 1.

It is also possible to sove recurrence relations that are not homogeneous.

Example 2. Solve hn=2hn¡1+3n, n> 1 and h0=2.

Solution. Let H(x)=
P

n=0
1 hnx

n. We have

H(x) = h0+
X
n=1

1

hnx
n

= 2+
X
n=1

1

(2hn¡1+3n)xn

= 2+2
X
n=1

1

hn¡1x
n+

X
n=1

1

3nxn

= 2+2
X
n=0

1

hnxn+1+
3 x

1¡ 3 x

= 2xH(x)+
2¡ 3 x
1¡ 3 x: (4)

Therefore

H(x)=
2¡ 3x

(1¡ 2x) (1¡ 3x) : (5)
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Application of partial fraction expansion gives

H(x)=
¡1

1¡ 2 x +
3

1¡ 3 x: (6)

Consequently hn=¡2n+3n+1.

Exercise 1. Solve

hn=hn¡1+n3; h0=0: (7)

(Ans: 1)

Exercise 2. Solve

hn=3hn¡1+3n; h0=2: (8)

(Ans:2 )

Before ending this unit, we check out some non-trivial examples.

Example 3. All n soldiers of a military squadron stand in a line. The o�cer in charge splits the line at several
places, forming smaller (nonempty) units. Then he names one person in each unit to be the commander of
that unit. Let hn be the number of ways he can do this. Find a closed formula for hn.

Solution. Say the n soldiers are split at l¡1 places, forming segments of k1; :::; kl soldiers. In this situation
there are clearly k1���� �kl di�erent ways to choose the commanders. Therefore, if the soldiers are split into
l segments, the number of ways to choose the commanders is given by the coe�cient for xn in the expansion of X

k=0

1

k xk

!
l

(9)

Consequently, when we consider all possible l, we see that the generating function for hn is

H(x)=
X
l=0

1
 X
k=0

1

k xk

!
l

=
X
l=0

1 �
x

(1¡x)2

�
l

=
1

1¡ x

(1¡ x)2

=1+
x

1¡ 3x+x2
(10)

Application of the partial fraction expansion now gives

1
1¡ 3 x+x2

=
1

5
p
�

1
x¡� ¡

1
x¡ �

�
(11)

where �=
¡
3+ 5

p �
2

; �=
3¡ 5

p

2
. Finally the answer is

hn=
1

5
p (�n¡ �n): (12)

Example 4. Let hn be the number of ways of dividing a regular (n + 1)-gon into triangles by inserting
diagonals that do not intersect in the interior.

1. n2 (n+1)2

4
.

2. (2+n) 3n.
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Then we have (set h1=1)

� The following recurrence relation holds for n> 2:

hn=h1hn¡1+h2 hn¡2+ ���+hn¡1h1: (13)

To see this, we pick an arbitrary side and �x it as the �base�. There is a triangle containing this side
seperating the (n+1)-gon into three parts: An (l+1)-gon to the left of this triangle, the triangle, and
an (n¡ l+1)-gon to the right of this triangle.

� Let h(x)=
P

n=1
1 hnx

n. Then (13) becomes

h(x) = h1x+
X
n=2

1

hnx
n

= h1x+
X
n=2

1

(h1x �hn¡1xn¡1+h2 x
2 �hn¡2xn¡2+ ���+hn¡1x

n¡1 �h1x)

= x+h(x)2: (14)

The generating function thus satis�es

h(x)2¡h(x)+x=0: (15)

� We see that

h(x)=
1� (1¡ 4x)1/2

2
: (16)

As h(0)=0, we have to pick the �¡� sign and consequently

h(x) =
1
2
¡ 1
2
(1¡ 4 x)1/2: (17)

� Now we do Taylor expansion of h(x). We have

h(x)=
1
2
¡ 1
2
(1¡ 4x)1/2 =) h(0)=0; (18)

h0(x) = (1¡ 4 x)¡1/2 =) h0(0)=1; (19)
h00 (x)= 2 (1¡ 4 x)¡3/2 =) h00(0)=2; (20)
h000(x) = 12 (1¡ 4 x)¡5/2 =) h000(0)= 12; (21)

It is now clear that

h(n)(x)= cn (1¡ 4x)
1

2
¡n
: (22)

To �gure out cn, we di�erentiate again to have

h(n+1)(x)= 2 (2n¡ 1) cn (1¡ 4 x)
1

2
¡n¡1

: (23)

Therefore

cn+1=2 (2n¡ 1) cn=22 (2n¡ 1) (2n¡ 3) cn¡1= ���=2n (2n¡ 1) ���(1); (24)

that is

cn=2n¡1 (2n¡ 3) ���1: (25)
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� This gives

hn=
cn
n!
=
1
n
2n¡1 (2n¡ 3) ���1

(n¡ 1) ���1 =
1
n

�
2n¡ 2
n¡ 1

�
; n> 2: (26)

Called �Catalan number�.

We end this unit with some curious facts about the Stirling numbers (of the 2nd kind) and the Bell numbers.

Example 5. We recall that the Stirling numbers of the 2nd kind has recurrence relation

S(n;m)=S(n¡ 1;m¡ 1)+mS(n¡ 1;m): (27)

We form the generating function

Sm(x) :=
X
n=0

1

S(n;m)xn: (28)

Thus we have

Sm(x) =
X
n=1

1

S(n;m)xn

=
X
n=1

1

S(n¡ 1;m¡ 1)xn+
X
n=1

1

mS(n¡ 1;m)xn

= xSm¡1(x)+mxSm(x): (29)

Therefore

Sm(x)=
x

1¡mx
Sm¡1(x) = ���=

xm

(1¡x) (1¡ 2 x) ��� (1¡mx)
: (30)

We apply partial fraction:

1

(1¡x) (1¡ 2x)���(1¡mx)
=

A1
1¡x +

A2
1¡ 2 x + ���+

Am
1¡mx

: (31)

It is easy to see that

Al=
1¡

1¡ 1

l

�¡
1¡ 2

l

�
���
�
1¡ l¡ 1

l

��
1¡ l+1

l

�
���
¡
1¡ m

l

� =(¡1)m¡l lm¡1

(l¡ 1)! (m¡ l)! : (32)

Therefore

S(n;m)=
X
l=1

m

(¡1)m¡l ln

l! (m¡ l)! : (33)

Of course this is simply T (n;m)/m!.

Exercise 3. Prove that X
l=1

m

(¡1)m¡l ln

l! (m¡ l)! = 0 (34)

if m>n. (Hint:3 )
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Example 6. Recall that the Bell numbers Bn=S(n; 1)+ ���+S(n; n). We have

Bn =
X
m=1

n X
l=1

m

(¡1)m¡l ln¡1

(l¡ 1)! (m¡ l)!

=
X
m=1

M X
l=1

m

(¡1)m¡l ln¡1

(l¡ 1)! (m¡ l)!

=
X
l=1

M X
m=l

M

(¡1)m¡l ln¡1

(l¡ 1)! (m¡ l)!

=
X
l=1

M
ln¡1

(l¡ 1)!

(X
s=0

M¡l
(¡1)s
s!

)
: (35)

Taking M ¡!1 we have

Bn=
1
e

X
l>0

ln

l!
: (36)

Now we try to �nd the generating function for Bn. Let

B(x) :=
X
n=0

1
Bn

n!
xn: (37)

Thus we have

B(x)¡ 1 =
1
e

X
n>1

xn

n!

X
l>1

ln¡1

(l¡ 1)!

=
1
e

X
l>1

1
l!
(erx¡ 1)

= ee
x¡1¡ 1: (38)

Thus the exponential generating function for the Bell numbers is

B(x)= ee
x¡1: (39)

3. Note that (34) follows from (30) where it is clear that the power of xn is zero for all n<m.
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