
Recurrence relations
We have seen that the method of ordinary generating function could be used to count the number
of ways putting identical balls into boxes (or more generally, the number of integer solutions to
equations of the form a1 x1+ ���+am xm=n), while the method of exponential generating function
could be used to count the number of ways putting di�erent balls into boxes. For these problems,
the generating functions are relatively easy to obtain. On the other hand, there are many other
problems for which it is not clear how to get the generating functions. In this lecture we will disucss
how to systematically obtain the generating functions when the so-called �recurrence relations�,
that is a relation between the an's, are available. We will do this through examples.

Examples with ordinary generating functions

Example 1. (Fibonacci numbers) The Fibonacci numbers are de�ned through a recurrence
relation

Fn=Fn¡1+Fn¡2; n> 2; (1)

with initial conditions F0=F1=1. Find a general formula for the Fn's.

Solution. We de�ne the ordinary generating function of fFng:
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Applying partial fraction expansion we have
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from which it follows that
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Remark 2. Alternatively, after (6) we know that
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for some constants A; B.

Exercise 1. Prove the above claim.

Now setting n=0; 1 we have
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from which the values of A; B can be determined.

Exercise 2. The Lucas sequence is de�ned through L0 = 2; L1 = 1 and Ln = Ln¡1 + Ln¡2 for n > 2. Use
generating function to �nd a formula for Ln. Then calculate L1+L3+ ���+L2n¡1.

Example 3. We have invested 1000 dollars into a savings account that pays �ve percent interest
at the end of each year. At the beginning of each year, we deposit another 500 dollars into this
account. How much money will be in this account after n years?

Solution. Let an be the amount of money after n years. We have

a0= 1000; an+1= 1.05 an+ 500: (13)
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Now write

A(x) := a0+ a1 x+ a2x
n+ ��� (14)

We see that X
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This leads to
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We now apply partial fraction expansion

1
(1¡x) (1¡ 1.05x)

=
A

1¡x +
B

1¡ 1.05x
: (18)
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Therefore

an= 1000� 1.05n+ 10500� 1.05n¡1¡ 10000= 11000� 1.05n¡ 10000: (21)

Exercise 3. A bank pays 10% interest at the end of each year on the money in an IRA account at the beginning
of the year. Let an be the amount of money at the end of year n. Find a formula for an. (Ans:1 )

Exercise 4. Show that in a list of all 2n¡1 compositions of n, n>4, the integer 3 occurs exactly n �2n¡5 times.

Example 4. Let hn be the maximum number of regions that can be created by n circles in the
plane. We have h0=1, h1=2, h2=4, h3=8, h4=14. Find a closed formula for hn through generating
functions.

1. 20000 (1.1)n¡ 20000.
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Solutions. We note that the �best� each new circle could do is to intersect with every existing
circle. This leads to

hn=hn¡1+2 (n¡ 1); n> 2 (22)

Of course the formula can now be easily obtained. But let's practice the generating function
method. Let H(x) :=
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Therefore

hn=2+n (n¡ 1): (25)

Example 5. Let an+2 = 3 an+1 ¡ 2 an for n> 0, and let a0= 0, a1= 1. Find an explicit formula
for an.

Solution. Note that the recurrence relation can be written as

an=3 an¡1¡ 2 an¡2; n> 2: (26)

Setting A(x)=
P

n=0
1 anx

n we have

A(x) = a0+ a1x+
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Thus

A(x) =
x

1¡ 3 x+2x2
; (28)

from which we can apply partial fraction expansion to obtain an=2n¡ 1.

In general we have the following theorem.

Theorem 6. Consider the recurrence relation

hn= a1hn¡1+ ���+ akhn¡k; n> k; ak=/ 0: (29)

Assume that the polynomial

xk¡ a1 xk¡1¡ ��� ¡ ak=0 (30)

has k distinct roots q1; :::; qk, then

hn= c1 q1
n+ ���+ ck qk

n (31)

for some constants c1; :::; ck determined though the values of h0; :::; hk¡1.

We will not prove the theorem here but leave it as an exercise for anyone interested in theory.

Exercise 5. What happens if we have repeated roots? (Hint:2 )

It is also possible to sove recurrence relations that are not homogeneous.

Example 7. Solve hn=2 hn¡1+3n, n> 1 and h0=2.

Solution. Let H(x)=
P

n=0
1 hnxn. We have
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Therefore

H(x)=
2¡ 3 x

(1¡ 2 x) (1¡ 3 x) : (33)

Application of partial fraction expansion gives

H(x) =
¡1

1¡ 2x +
3

1¡ 3x: (34)

2. What do we do in partial fraction expansion when there are repeated roots?
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Consequently hn=¡2n+3n+1.

Exercise 6. Solve

hn=hn¡1+n3; h0=0: (35)

(Ans: 3)

Exercise 7. Solve

hn=3hn¡1+3n; h0=2: (36)

(Ans:4 )

3. n2 (n+1)2

4
.

4. (2+n) 3n.
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