
Ordinary generating functions

Definition 1. (Ordinary generating function) Let a0; a1; ::: be a sequence of numbers. The power
series A(x) := a0+ a1x+ a2x

2+ ��� is called the �generating function� of the sequence.

Notation 2. It is convenient to use the shorthand
P

n=0
1

an x
n to denote the power series a0+ a1 x+ ���.

Note that
P

n=0
1 anx

n is just another way of writing a0+ a1x+ ��� , nothing more.

Remark 3. When there are only �nitely many an's, the generating function of the sequence is a polynomial.
On the other hand, for practical purposes, a �power series� can be treated as a �polynomial of in�nite degree�1.
Thus we naturally have the following rules for operations of power series.
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Remark. It is crucial to understand that the index n in the power series
P

n=0
1

an x
n is only a �place holder�.

It's whole purpose is to indicate that the subscript of the coe�cient and the power of x are the same, and
that the sum starts from the zeroth term. Therefore we can replace n by any other symbol:X

n=0

1

anx
n;
X
m=0

1

amx
m;

X
k=0

1

akx
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all denote the same power series

a0+ a1x+ a2x
2+ ���+ anx

n+ ��� (7)

However, they are not the same as X
n=2

1

anx
n or

X
k=0

1

ak x
k+1 (8)

as the former starts from a di�erent term, and the latter has a di�erent relation between the subscript and
the power.

Example 4. Let A(x)= 1+ x2+3x5 and B(x)= 4+ x+2x3+x5.

a) Compute A(x)+B(x);

b) Compute A(x)B(x).

Solution.

a) We have

A(x) = 1 �x0+0 �x1+1 �x2+0 �x3+0 �x4+3 �x5 (9)

and

B(x)= 4 �x0+1 �x1+0 �x2+2 �x3+0 �x4+1 �x5 (10)

1. This is what Newton did!



so

A(x)+B(x) = (1+4) �x0+(0+1) �x1+(1+0) �x2

+(0+2) �x3+(0+0) �x4+(3+1) �x5

= 5+ x+x2+2x3+4x5: (11)

b) By (9,10) we have

A(x)B(x) = (1� 4)x0+(1� 1+0� 4)x1

+(1� 0+0� 1+1� 4)x2+ ���
+(3� 1)x10

= 4+x+4x2+3x3+ 15x5+3 x6+x7+6x8+3x10: (12)

Example 5. Let A(x) := 2+3 x+4x2+ ��� and B(x) := 1+3 x+5x2+ ���.
a) Write A(x); B(x) into the compact form.

b) Calculate A(x) +B(x).

c) Calculate A(x)B(x).

d) Calculate A0(x).

Solution.

a) We have
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d) We have

A0(x) =
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Taylor expansion

In Combinatorics we usually do the Taylor expansion at 0.

f(x)= f(0)+ f 0(0) x+
f 00(0)
2

x2+ ���+ f (n)(0)
n!

xn+ ��� (17)

In essence, Taylor expansion is the following relation

f(x)= a power series=a polynomial of degree in�nity. (18)

The most useful Taylor expansion are
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Note that from (19) we have
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and so on.

Example 6. Let A(x) := 2+3 x+4x2+ ��� and B(x) := 1+3 x+5x2+ ���. Calculate A(x)B(x).

Solution. We recall

A(x)=
X
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1

(n+2) xn; B(x)=
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Therefore
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The method of partial fractions

The basic idea is to write P

Q
, where P ; Q are polynomials with degree of P less than degree of Q, into the

sum of functions of the type A

(s¡ r)m
. It is done through the following steps.

1. Factorize Q:

Q(s)= (s¡ r1) ��� (s¡ rn): (26)

2. Go through r1; :::; rn and write down the terms of the RHS sum of

P

Q
=
X

��� (27)

according to the following rules:

i. If ri is a single real root, write down
Ai

s¡ ri
: (28)

ii. If ri is a repeated real root, say with multiplicity m, write down

Ai1
s¡ ri

+
Ai2

(s¡ ri)2
+ ���+ Aim

(s¡ ri)m
: (29)

After this, discard those other copies of ri from the list r1; :::; rn and move on to the next root.
Note that the previous �single root� case is actually contained in this case.

iii. If ri=�+ i � is complex root with multiplicitym, then there must be another rj=�¡ i � with
the same multiplicity. Write down

Ci1 s+Di1

(s¡�)2+ �2
+ ���+ Cim s+Dim

[(s¡�)2+ �2]m
: (30)

For example, if

Q(s)= (s¡ 1)(s¡ 3)3 (s+ i) (s¡ i); (31)

we have six roots (counting multiplicity) 1;3;3; 3;¡i; i. Now to form the RHS, we go through this list
one by one:

1: Single real root =) A
s¡ 1; (32)

3: repeated real root with multiplicity 3 =) B
s¡ 3 +

C
(s¡ 3)2 +

D
(s¡ 3)3 ; (33)

Ignore the remaining two 3's. (34)

¡i:Complex root with multiplicity 1 =) Es+F

s2+1
; (35)

Ignore the complex conjugate i: (36)

3. Determine the constants using the following procedure: We use the above example

Q(s)= (s¡ 1)(s¡ 3)3 (s+ i) (s¡ i); (37)

which gives
P
Q
=

A
s¡ 1 +

B
s¡ 3 +

C
(s¡ 3)2 +

D
(s¡ 3)3 +

Es+F
s2+1

(38)

leading to

P (s) =A (s¡ 3)3 (s2+1)+B (s¡ 1) (s¡ 3)2 (s2+1)+C (s¡ 1) (s¡ 3) (s2+1)+D (s¡ 1) (s2+1)+

(Es+F ) (s¡ 1) (s¡ 3)3: (39)

i. Set s to be each of the single real roots. This would immediately give all the constants corre-
sponding to those single roots.

In our example, we see that setting s=1 immediately gives A.



ii. Set s to be the repeated real roots. This would immediately give all the constants in the last
terms of the terms corresponding to those repeated roots.

In our example, setting s=3 immediately gives D.

� At this stage, you may want to try the �di�erentiation method�. In our example, di�er-
entiating once we obtain

P 0(s) = A [2 (s¡ 3) (s2+1)+ (s¡ 3)2 (2 s)]
+B [(s¡ 3)2 (s2+1)+2 (s¡ 1) (s¡ 3) (s2+1)+2 s (s¡ 1) (s¡ 3)2]
+C [(s¡ 3) (s2+1)+ (s¡ 1) (s2+1)+2 s (s¡ 1) (s¡ 3)]
+D [s2+1+2 s (s¡ 1)]
+E [(s¡ 1) (s¡ 3)3] + (Es+F ) [(s¡ 3)3+3 (s¡ 1) (s¡ 3)2]: (40)

Looks very complicated, but as soon as we substitute s=3, only C and D remain. As
we have already found D, determining C is easy.

Di�erentiate again and then set s=3, we obtain one equation for B;C;D. Since we
already know C;D, B is immediately determined.

iii. Set s=0.

iv. If there are still some constants need to be determined, compare the coe�cient for the highest
power term sn of the RHS. Note that as P has lower degree, we always have 0 = ���. In our
example,

P (s) = A (s ¡ 3)3 (s2 + 1) + B (s ¡ 1) (s ¡ 3)2 (s2 + 1) + C (s ¡ 1) (s ¡ 3) (s2 + 1) +

D (s¡ 1) (s2+1)+ (Es+F ) (s¡ 1) (s¡ 3)3: (41)

The higher order term on the RHS is s5. Assuming

P (s)= p5 s5+ ��� (42)

we have

p5=A+B+E: (43)

Note that this is equivalent to setting s=1.

v. Let's say there are k constants still need to be determined. Set s to be k arbitrary values. You
will obtain k equations for these k costants, solve them.

In our example, k=0 if we have used the �di�erentiation method�, k=2 if we haven't.

Example 7. Compute the partial fraction expansion of

6 s2¡ 13 s+2
s (s¡ 1) (s¡ 6) : (44)

Solution. First we check that the degree of the denominator is indeed higher than the degree of the
nominator. Thus we can write

6 s2¡ 13 s+2

s (s¡ 1) (s¡ 6) =
A

s
+

B

s¡ 1 +
C

s¡ 6 : (45)

Summing the RHS gives

A

s
+

B

s¡ 1 +
C

s¡ 6 =
A (s¡ 1) (s¡ 6)+Bs (s¡ 6)+Cs (s¡ 1)

s (s¡ 1) (s¡ 6) (46)

We need to �nd A; B;C such that

A (s¡ 1) (s¡ 6)+Bs (s¡ 6)+Cs (s¡ 1)=6 s2¡ 13 s+2: (47)

Naïvely, one may want to expand the LHS into

(A+B+C) s2+(¡7A¡ 6B ¡C) s+6A (48)



and then solve

A+B+C = 6 (49)
¡7A¡ 6B ¡C = ¡13 (50)

6A = 2: (51)

However there is a much simpler way. The key observation is that when we set s=0;1; 6, exactly two of the
three terms vanish. In other words, when we set s=0;1;6, exactly one unknown is left in the equation � one
equation, one unknown, linear: the simplest equation possible!

� Setting s=0, we have

A (0¡ 1) (0¡ 6)=2=)A=1/3: (52)

� Setting s=1, we have

B (1¡ 6)=¡5=)B=1: (53)

� Setting s=6, we have

C 6 (6¡ 1)= 216¡ 78+2= 140=)C = 14/3: (54)

Thus the solution is

A=
1
3
; B=1; C =

14
3
: (55)

Example 8. Compute the partial fraction expansion of

5 s2+ 34 s+ 53
(s+3)2 (s+1)

: (56)

Solution. Again, we �rst check that the nominator's degree is lower.
Next we write the function into partial fractions:

5 s2+ 34 s+ 53
(s+3)2 (s+1)

=
A

s+3
+

B

(s+3)2
+

C

s+1
: (57)

Calculating the RHS, we have

A
s+3

+
B

(s+3)2
+

C
s+1

=
A (s+3) (s+1)+B (s+1)+C (s+3)2

(s+3)2 (s+1)
: (58)

We need A; B;C such that

A (s+3) (s+1)+B (s+1)+C (s+3)2=5 s2+ 34 s+ 53: (59)

Setting s=¡3, we have

B (¡3+1)= 45¡ 102+ 53=¡4=)B=2: (60)

Setting s=¡1, we have

C (¡1+3)2=5¡ 34+ 53= 24=)C =6: (61)

To determine A, we pick s=0 to obtain

3A+B+9C = 53=)A=¡1: (62)

Example 9. Compute the partial fraction expansion of

7 s2+ 23 s+ 30
(s¡ 2) (s2+2 s+5)

: (63)

Solution. Again, the degree of the nominator is lower. Check.
We write

7 s2+ 23 s+ 30
(s¡ 2) (s2+2 s+5)

=
A

s¡ 2 +
Bs+C

s2+2 s+5
=
A (s2+2 s+5)+ (Bs+C) (s¡ 2)

(s¡ 2) (s2+2 s+5)
: (64)



We need to �nd A; B;C such that

A (s2+2 s+5)+ (Bs+C) (s¡ 2)=7 s2+ 23 s+ 30: (65)

Setting s=2 we have

A (4+4+5)= 28+ 46+ 30= 104=)A=8: (66)

To �nd B;C, we need to set s to values di�erent from 2 and obtain equations for B;C. There is a minor trick
here that can make the equations simple. We notice that theB disappears if we set s=0. Setting s=0 we have

5A¡ 2C = 30=)C =5: (67)

Finally comparing the s2 terms (or setting s to yet another value) we have

A+B=7=)B=¡1: (68)
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