Ordinary generating functions

Definition 1. (Ordinary generating function) Let a_{0}, a_{1}, \ldots be a sequence of numbers. The power series $A(x):=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ is called the "generating function" of the sequence.

Notation 2. It is convenient to use the shorthand $\sum_{n=0}^{\infty} a_{n} x^{n}$ to denote the power series $a_{0}+a_{1} x+\cdots$. Note that $\sum_{n=0}^{\infty} a_{n} x^{n}$ is just another way of writing $a_{0}+a_{1} x+\cdots$, nothing more.

Remark 3. When there are only finitely many $a_{n}{ }^{\prime}$'s, the generating function of the sequence is a polynomial. On the other hand, for practical purposes, a "power series" can be treated as a "polynomial of infinite degree"1. Thus we naturally have the following rules for operations of power series.

Operations of power series

$$
\begin{align*}
\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} b_{n} x^{n} & =\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n} . \tag{1}\\
c \sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{n=0}^{\infty}\left(c a_{n}\right) x^{n} . \tag{2}\\
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n} . \tag{3}\\
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} . \tag{4}\\
\int_{0}^{x}\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right) \mathrm{d} z & =\sum_{n=1}^{\infty} \frac{a_{n-1}}{n} x^{n} . \tag{5}
\end{align*}
$$

Remark. It is crucial to understand that the index n in the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is only a "place holder". It's whole purpose is to indicate that the subscript of the coefficient and the power of x are the same, and that the sum starts from the zeroth term. Therefore we can replace n by any other symbol:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} x^{n}, \sum_{m=0}^{\infty} a_{m} x^{m}, \sum_{k=0}^{\infty} a_{k} x^{k} \tag{6}
\end{equation*}
$$

all denote the same power series

$$
\begin{equation*}
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots \tag{7}
\end{equation*}
$$

However, they are not the same as

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} x^{n} \text { or } \sum_{k=0}^{\infty} a_{k} x^{k+1} \tag{8}
\end{equation*}
$$

as the former starts from a different term, and the latter has a different relation between the subscript and the power.

Example 4. Let $A(x)=1+x^{2}+3 x^{5}$ and $B(x)=4+x+2 x^{3}+x^{5}$.
a) Compute $A(x)+B(x)$;
b) Compute $A(x) B(x)$.

Solution.

a) We have

$$
\begin{equation*}
A(x)=1 \cdot x^{0}+0 \cdot x^{1}+1 \cdot x^{2}+0 \cdot x^{3}+0 \cdot x^{4}+3 \cdot x^{5} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B(x)=4 \cdot x^{0}+1 \cdot x^{1}+0 \cdot x^{2}+2 \cdot x^{3}+0 \cdot x^{4}+1 \cdot x^{5} \tag{10}
\end{equation*}
$$

[^0]so
\[

$$
\begin{align*}
A(x)+B(x)= & (1+4) \cdot x^{0}+(0+1) \cdot x^{1}+(1+0) \cdot x^{2} \\
& +(0+2) \cdot x^{3}+(0+0) \cdot x^{4}+(3+1) \cdot x^{5} \\
= & 5+x+x^{2}+2 x^{3}+4 x^{5} \tag{11}
\end{align*}
$$
\]

b) $\mathrm{By}(9,10)$ we have

$$
\begin{align*}
A(x) B(x)= & (1 \times 4) x^{0}+(1 \times 1+0 \times 4) x^{1} \\
& +(1 \times 0+0 \times 1+1 \times 4) x^{2}+\cdots \\
& +(3 \times 1) x^{10} \\
= & 4+x+4 x^{2}+3 x^{3}+15 x^{5}+3 x^{6}+x^{7}+6 x^{8}+3 x^{10} \tag{12}
\end{align*}
$$

Example 5. Let $A(x):=2+3 x+4 x^{2}+\cdots$ and $B(x):=1+3 x+5 x^{2}+\cdots$.
a) Write $A(x), B(x)$ into the compact form.
b) Calculate $A(x)+B(x)$.
c) Calculate $A(x) B(x)$.
d) Calculate $A^{\prime}(x)$.

Solution.

a) We have
b) We have

$$
\begin{equation*}
A(x)=\sum_{n=0}^{\infty}(n+2) x^{n}, \quad B(x)=\sum_{n=0}^{\infty}(2 n+1) x^{n} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
A(x)+B(x)=\sum_{n=0}^{\infty} 3(n+1) x^{n} \tag{14}
\end{equation*}
$$

c) We have the coefficient of x^{n} in $A(x) B(x)$ to be

$$
\begin{align*}
\sum_{k=0}^{n}(k+2)(2(n-k)+1)= & \sum_{k=0}^{n}(k+2)[(2 n+1)-2 k] \\
= & \sum_{k=0}^{n}\left[2(2 n+1)+(2 n-3) k-2 k^{2}\right] \\
= & 2(n+1)(2 n+1)+(2 n-3) \sum_{k=0}^{n} k \\
& -2 \sum_{k=0}^{n} k^{2} \\
= & 2(n+2)(2 n+1)+(2 n-3) \frac{n(n+1)}{2} \\
& -2 \frac{n(n+1)(2 n+1)}{6} \\
= & \frac{n^{3}}{3}+\frac{5}{2} n^{2}+\frac{25 n}{6}+2 . \tag{15}
\end{align*}
$$

d) We have

$$
\begin{align*}
A^{\prime}(x) & =\left(\sum_{n=0}^{\infty}(n+2) x^{n}\right)^{\prime} \\
& =\sum_{n=1}^{\infty}(n+2) n x^{n-1} \\
& =\sum_{n=0}^{\infty}(n+3)(n+1) x^{n} \tag{16}
\end{align*}
$$

Taylor expansion

In Combinatorics we usually do the Taylor expansion at 0 .

$$
\begin{equation*}
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots \tag{17}
\end{equation*}
$$

In essence, Taylor expansion is the following relation

$$
\begin{equation*}
f(x)=\text { a power series }=\text { a polynomial of degree infinity } . \tag{18}
\end{equation*}
$$

The most useful Taylor expansion are

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+\cdots=\sum_{n=0}^{\infty} x^{n} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{20}
\end{equation*}
$$

Note that from (19) we have

$$
\begin{gather*}
\frac{1}{(1-x)^{2}}=\left(\frac{1}{1-x}\right)^{\prime}=\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=0}^{\infty}(n+1) x^{n} \tag{21}\\
\frac{2}{(1-x)^{3}}=\left(\frac{1}{(1-x)^{2}}\right)^{\prime}=\sum_{n=1}^{\infty}(n+1) n x^{n-1}=\sum_{n=0}^{\infty}(n+2)(n+1) x^{n} . \tag{22}
\end{gather*}
$$

and so on.
Example 6. Let $A(x):=2+3 x+4 x^{2}+\cdots$ and $B(x):=1+3 x+5 x^{2}+\cdots$. Calculate $A(x) B(x)$.
Solution. We recall

$$
\begin{equation*}
A(x)=\sum_{n=0}^{\infty}(n+2) x^{n}, \quad B(x)=\sum_{n=0}^{\infty}(2 n+1) x^{n} \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{align*}
A(x) & =\sum_{n=0}^{\infty} x^{n}+\sum_{n=0}^{\infty}(n+1) x^{n} \\
& =\frac{1}{1-x}+\frac{1}{(1-x)^{2}} \tag{24}
\end{align*}
$$

and

$$
\begin{align*}
B(x) & =2 \sum_{n=0}^{\infty}(n+1) x^{n}-\sum_{n=0}^{\infty} x^{n} \\
& =\frac{2}{(1-x)^{2}}-\frac{1}{1-x} \tag{25}
\end{align*}
$$

Therefore

$$
\begin{aligned}
A(x) B(x)= & \frac{2}{(1-x)^{4}}+\frac{1}{(1-x)^{3}}-\frac{1}{(1-x)^{2}} \\
= & \frac{1}{3}\left(\frac{1}{1-x}\right)^{\prime \prime \prime}+\frac{1}{2}\left(\frac{1}{1-x}\right)^{\prime \prime}-\left(\frac{1}{1-x}\right)^{\prime} \\
= & \frac{1}{3} \sum_{n=0}^{\infty}(n+3)(n+2)(n+1) x^{n} \\
& +\frac{1}{2} \sum_{n=0}^{\infty}(n+2)(n+1) x^{n}-\sum_{n=0}^{\infty}(n+1) x^{n} \\
= & \frac{n^{3}}{3}+\frac{5}{2} n^{2}+\frac{25 n}{6}+2 .
\end{aligned}
$$

The method of partial fractions

The basic idea is to write $\frac{P}{Q}$, where P, Q are polynomials with degree of P less than degree of Q, into the sum of functions of the type $\frac{A}{(s-r)^{m}}$. It is done through the following steps.

1. Factorize Q :

$$
\begin{equation*}
Q(s)=\left(s-r_{1}\right) \cdots\left(s-r_{n}\right) . \tag{26}
\end{equation*}
$$

2. Go through r_{1}, \ldots, r_{n} and write down the terms of the RHS sum of

$$
\begin{equation*}
\frac{P}{Q}=\sum \cdots \tag{27}
\end{equation*}
$$

according to the following rules:
i. If r_{i} is a single real root, write down

$$
\begin{equation*}
\frac{A_{i}}{s-r_{i}} \tag{28}
\end{equation*}
$$

ii. If r_{i} is a repeated real root, say with multiplicity m, write down

$$
\begin{equation*}
\frac{A_{i 1}}{s-r_{i}}+\frac{A_{i 2}}{\left(s-r_{i}\right)^{2}}+\cdots+\frac{A_{i m}}{\left(s-r_{i}\right)^{m}} \tag{29}
\end{equation*}
$$

After this, discard those other copies of r_{i} from the list r_{1}, \ldots, r_{n} and move on to the next root. Note that the previous "single root" case is actually contained in this case.
iii. If $r_{i}=\alpha+i \beta$ is complex root with multiplicity m, then there must be another $r_{j}=\alpha-i \beta$ with the same multiplicity. Write down

$$
\begin{equation*}
\frac{C_{i 1} s+D_{i 1}}{(s-\alpha)^{2}+\beta^{2}}+\cdots+\frac{C_{i m} s+D_{i m}}{\left[(s-\alpha)^{2}+\beta^{2}\right]^{m}} \tag{30}
\end{equation*}
$$

For example, if

$$
\begin{equation*}
Q(s)=(s-1)(s-3)^{3}(s+i)(s-i) \tag{31}
\end{equation*}
$$

we have six roots (counting multiplicity) $1,3,3,3,-i, i$. Now to form the RHS, we go through this list one by one:

$$
\begin{align*}
\text { 1: Single real root } & \Longrightarrow \frac{A}{s-1} ; \tag{32}\\
\text { 3: repeated real root with multiplicity } 3 & \Longrightarrow \frac{B}{s-3}+\frac{C}{(s-3)^{2}}+\frac{D}{(s-3)^{3}} ; \tag{33}\\
\text { Ignore the remaining two 3's. } & \tag{34}\\
-i \text { : Complex root with multiplicity } 1 & \Longrightarrow \frac{E s+F}{s^{2}+1} ; \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\text { Ignore the complex conjugate } i \text {. } \tag{35}
\end{equation*}
$$

3. Determine the constants using the following procedure: We use the above example

$$
\begin{equation*}
Q(s)=(s-1)(s-3)^{3}(s+i)(s-i) \tag{37}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{P}{Q}=\frac{A}{s-1}+\frac{B}{s-3}+\frac{C}{(s-3)^{2}}+\frac{D}{(s-3)^{3}}+\frac{E s+F}{s^{2}+1} \tag{38}
\end{equation*}
$$

leading to

$$
\begin{align*}
& P(s)=A(s-3)^{3}\left(s^{2}+1\right)+B(s-1)(s-3)^{2}\left(s^{2}+1\right)+C(s-1)(s-3)\left(s^{2}+1\right)+D(s-1)\left(s^{2}+1\right)+ \\
& (E s+F)(s-1)(s-3)^{3} \tag{39}
\end{align*}
$$

i. Set s to be each of the single real roots. This would immediately give all the constants corresponding to those single roots.

In our example, we see that setting $s=1$ immediately gives A.
ii. Set s to be the repeated real roots. This would immediately give all the constants in the last terms of the terms corresponding to those repeated roots.

In our example, setting $s=3$ immediately gives D.

- At this stage, you may want to try the "differentiation method". In our example, differentiating once we obtain

$$
\begin{align*}
P^{\prime}(s)= & A\left[2(s-3)\left(s^{2}+1\right)+(s-3)^{2}(2 s)\right] \\
& +B\left[(s-3)^{2}\left(s^{2}+1\right)+2(s-1)(s-3)\left(s^{2}+1\right)+2 s(s-1)(s-3)^{2}\right] \\
& +C\left[(s-3)\left(s^{2}+1\right)+(s-1)\left(s^{2}+1\right)+2 s(s-1)(s-3)\right] \\
& +D\left[s^{2}+1+2 s(s-1)\right] \\
& +E\left[(s-1)(s-3)^{3}\right]+(E s+F)\left[(s-3)^{3}+3(s-1)(s-3)^{2}\right] . \tag{40}
\end{align*}
$$

Looks very complicated, but as soon as we substitute $s=3$, only C and D remain. As we have already found D, determining C is easy.

Differentiate again and then set $s=3$, we obtain one equation for B, C, D. Since we already know C, D, B is immediately determined.
iii. Set $s=0$.
iv. If there are still some constants need to be determined, compare the coefficient for the highest power term s^{n} of the RHS. Note that as P has lower degree, we always have $0=\cdots$. In our example,

$$
\begin{align*}
& P(s)=A(s-3)^{3}\left(s^{2}+1\right)+B(s-1)(s-3)^{2}\left(s^{2}+1\right)+C(s-1)(s-3)\left(s^{2}+1\right)+ \\
& D(s-1)\left(s^{2}+1\right)+(E s+F)(s-1)(s-3)^{3} \tag{41}
\end{align*}
$$

The higher order term on the RHS is s^{5}. Assuming

$$
\begin{equation*}
P(s)=p_{5} s^{5}+\cdots \tag{42}
\end{equation*}
$$

we have

$$
\begin{equation*}
p_{5}=A+B+E . \tag{43}
\end{equation*}
$$

Note that this is equivalent to setting $s=\infty$.
v. Let's say there are k constants still need to be determined. Set s to be k arbitrary values. You will obtain k equations for these k costants, solve them.

In our example, $k=0$ if we have used the "differentiation method", $k=2$ if we haven't.
Example 7. Compute the partial fraction expansion of

$$
\begin{equation*}
\frac{6 s^{2}-13 s+2}{s(s-1)(s-6)} \tag{44}
\end{equation*}
$$

Solution. First we check that the degree of the denominator is indeed higher than the degree of the nominator. Thus we can write

$$
\begin{equation*}
\frac{6 s^{2}-13 s+2}{s(s-1)(s-6)}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{s-6} \tag{45}
\end{equation*}
$$

Summing the RHS gives

$$
\begin{equation*}
\frac{A}{s}+\frac{B}{s-1}+\frac{C}{s-6}=\frac{A(s-1)(s-6)+B s(s-6)+C s(s-1)}{s(s-1)(s-6)} \tag{46}
\end{equation*}
$$

We need to find A, B, C such that

$$
\begin{equation*}
A(s-1)(s-6)+B s(s-6)+C s(s-1)=6 s^{2}-13 s+2 \tag{47}
\end{equation*}
$$

Naïvely, one may want to expand the LHS into

$$
\begin{equation*}
(A+B+C) s^{2}+(-7 A-6 B-C) s+6 A \tag{48}
\end{equation*}
$$

and then solve

$$
\begin{align*}
A+B+C & =6 \tag{49}\\
-7 A-6 B-C & =-13 \tag{50}\\
6 A & =2 . \tag{51}
\end{align*}
$$

However there is a much simpler way. The key observation is that when we set $s=0,1,6$, exactly two of the three terms vanish. In other words, when we set $s=0,1,6$, exactly one unknown is left in the equation - one equation, one unknown, linear: the simplest equation possible!

- Setting $s=0$, we have

$$
\begin{equation*}
A(0-1)(0-6)=2 \Longrightarrow A=1 / 3 \tag{52}
\end{equation*}
$$

- Setting $s=1$, we have

$$
\begin{equation*}
B(1-6)=-5 \Longrightarrow B=1 \tag{53}
\end{equation*}
$$

- Setting $s=6$, we have

$$
\begin{equation*}
C 6(6-1)=216-78+2=140 \Longrightarrow C=14 / 3 \tag{54}
\end{equation*}
$$

Thus the solution is

$$
\begin{equation*}
A=\frac{1}{3}, \quad B=1, \quad C=\frac{14}{3} \tag{55}
\end{equation*}
$$

Example 8. Compute the partial fraction expansion of

$$
\begin{equation*}
\frac{5 s^{2}+34 s+53}{(s+3)^{2}(s+1)} \tag{56}
\end{equation*}
$$

Solution. Again, we first check that the nominator's degree is lower.
Next we write the function into partial fractions:

$$
\begin{equation*}
\frac{5 s^{2}+34 s+53}{(s+3)^{2}(s+1)}=\frac{A}{s+3}+\frac{B}{(s+3)^{2}}+\frac{C}{s+1} \tag{57}
\end{equation*}
$$

Calculating the RHS, we have

$$
\begin{equation*}
\frac{A}{s+3}+\frac{B}{(s+3)^{2}}+\frac{C}{s+1}=\frac{A(s+3)(s+1)+B(s+1)+C(s+3)^{2}}{(s+3)^{2}(s+1)} \tag{58}
\end{equation*}
$$

We need A, B, C such that

$$
\begin{equation*}
A(s+3)(s+1)+B(s+1)+C(s+3)^{2}=5 s^{2}+34 s+53 \tag{59}
\end{equation*}
$$

Setting $s=-3$, we have

$$
\begin{equation*}
B(-3+1)=45-102+53=-4 \Longrightarrow B=2 \tag{60}
\end{equation*}
$$

Setting $s=-1$, we have

$$
\begin{equation*}
C(-1+3)^{2}=5-34+53=24 \Longrightarrow C=6 \tag{61}
\end{equation*}
$$

To determine A, we pick $s=0$ to obtain

$$
\begin{equation*}
3 A+B+9 C=53 \Longrightarrow A=-1 \tag{62}
\end{equation*}
$$

Example 9. Compute the partial fraction expansion of

$$
\begin{equation*}
\frac{7 s^{2}+23 s+30}{(s-2)\left(s^{2}+2 s+5\right)} \tag{63}
\end{equation*}
$$

Solution. Again, the degree of the nominator is lower. Check.
We write

$$
\begin{equation*}
\frac{7 s^{2}+23 s+30}{(s-2)\left(s^{2}+2 s+5\right)}=\frac{A}{s-2}+\frac{B s+C}{s^{2}+2 s+5}=\frac{A\left(s^{2}+2 s+5\right)+(B s+C)(s-2)}{(s-2)\left(s^{2}+2 s+5\right)} \tag{64}
\end{equation*}
$$

We need to find A, B, C such that

$$
\begin{equation*}
A\left(s^{2}+2 s+5\right)+(B s+C)(s-2)=7 s^{2}+23 s+30 \tag{65}
\end{equation*}
$$

Setting $s=2$ we have

$$
\begin{equation*}
A(4+4+5)=28+46+30=104 \Longrightarrow A=8 \tag{66}
\end{equation*}
$$

To find B, C, we need to set s to values different from 2 and obtain equations for B, C. There is a minor trick here that can make the equations simple. We notice that the B disappears if we set $s=0$. Setting $s=0$ we have

$$
\begin{equation*}
5 A-2 C=30 \Longrightarrow C=5 \tag{67}
\end{equation*}
$$

Finally comparing the s^{2} terms (or setting s to yet another value) we have

$$
\begin{equation*}
A+B=7 \Longrightarrow B=-1 \tag{68}
\end{equation*}
$$

[^0]: 1. This is what Newton did!
