
Motivating examples
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Proof. We notice that
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Setting x=1 gives the result. �

Example 2. Prove that the number of di�erent partitions with odd summands of n is the same as the
number of di�erent partitions with distinct summands.

Proof. If we let an denote the �rst number and bn denote the second number, then we haveX
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Then all we need to show is
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This is done through the following trick.
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Note that the terms with even powers of x cancel each other. �

Example 3. There are 3 identical weights of 1g each, 4 identical weights of 2g each, and 2 identical weights
of 4g each. How many di�erent ways are there to obtain 6g from these weights?

Solution. The answer is given by the coe�cent of x6 in the expansion of
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We re-write as
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and then apply partial fraction to [���]. We will review how to do this in the next lecture.

Exercise 1. What if the weights are all di�erent? (Ans.1 )

1. (1+ x)3 (1+x2)4 (1+x4)2.
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