Motivating examples

Example 1. Prove that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
Proof. We notice that

$$
\begin{equation*}
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \tag{1}
\end{equation*}
$$

Setting $x=1$ gives the result.
Example 2. Prove that the number of different partitions with odd summands of n is the same as the number of different partitions with distinct summands.

Proof. If we let a_{n} denote the first number and b_{n} denote the second number, then we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} x^{n}=\left(1+x+x^{2}+\cdots\right)\left(1+x^{3}+\cdots\right) \cdots=\frac{1}{1-x} \frac{1}{1-x^{3}} \cdots \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{n} x^{n}=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \cdots \tag{3}
\end{equation*}
$$

Then all we need to show is

$$
\begin{equation*}
\frac{1}{1-x} \frac{1}{1-x^{3}} \cdots=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \cdots \tag{4}
\end{equation*}
$$

This is done through the following trick.

$$
\begin{align*}
(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) & =\frac{1-x^{2}}{1-x} \frac{1-x^{4}}{1-x^{2}} \frac{1-x^{6}}{1-x^{3}} \cdots \\
& =\frac{1}{1-x} \frac{1}{1-x^{3}} \cdots \tag{5}
\end{align*}
$$

Note that the terms with even powers of x cancel each other.
Example 3. There are 3 identical weights of 1 g each, 4 identical weights of 2 g each, and 2 identical weights of 4 g each. How many different ways are there to obtain 6 g from these weights?
Solution. The answer is given by the coefficent of x^{6} in the expansion of

$$
\begin{equation*}
\left(1+x+x^{2}+x^{3}\right)\left(1+x^{2}+x^{4}+x^{6}+x^{8}\right)\left(1+x^{4}+x^{8}\right) \tag{6}
\end{equation*}
$$

We re-write as

$$
\begin{equation*}
\left(1-x^{4}\right)\left(1-x^{10}\right)\left(1-x^{12}\right)\left[\frac{1}{1-x} \frac{1}{1-x^{2}} \frac{1}{1-x^{4}}\right] \tag{7}
\end{equation*}
$$

and then apply partial fraction to $[\cdots]$. We will review how to do this in the next lecture.
Exercise 1. What if the weights are all different? (Ans. ${ }^{1}$)

1. $(1+x)^{3}\left(1+x^{2}\right)^{4}\left(1+x^{4}\right)^{2}$.
