
Identical balls, identical boxes.

We consider the following problem.

How many ways are there to distribute n identical balls into m identical boxes.

The boxes are not allowed to be empty
� We denote by pm(n) the number of ways to distribute n identical balls into m identical boxes with

all boxes non-empty. It is clear that

pm(n)= number of ways to partition n identical balls into m groups. (1)

� Interpretations of pm(n).

� We further notice that pm(n) is the number of integer solutions to

x1+ ���+xm=n; x1>x2> ���>xm> 1: (2)

If we set yi=xi¡ 1, (2) becomes

y1+ ���+ ym=n¡m; y1> y2> ���> ym> 0: (3)

This gives

pm(n) =
X
s=1

m

ps(n¡m): (4)

Exercise 1. Prove (4).

� Another way of understanding pm(n) is through the so-called Ferrer's graph.

2+1+1+1  !

Figure 1. Ferrer's Graph

Using Ferrer's graph we can easily prove the following:

Proposition 1. pm(n)= the number of partitions of n into summands whose largest is m.

Proof. We prove the following: The number of partitions into exactlym summands is the same
as the number of partitions with largest summand m. To see this we just notice that there is
a bijection between the two sets given by

Figure 2. 2+1+1+1 ! 4+1

Thus ends the proof. �



Exercise 2. Use Ferrer's graph to prove the following:

the number of partitions of n + m into m parts = the number of partitions of n into no more than m

parts. (5)

Exercise 3. Show that the number of partitions of an integer n into summands of even size is equal to
the number of partitions into summands such that each summand occurs an even number of times.

Exercise 4. A partition is said to be self-conjugate if the Ferrer's graph of the partition is equal to its own
transpose. Show that the number of self-conjugate partitions of n is equal to the number of partitions of
n into distinct odd parts.

� More properties of pm(n).

� Clearly p1(n)= 1.

� It is also easy to see that p2(n) =
� n
2

�
, the largest integer no more than n/2.

� We prove the following non-trivial result:

p3(n)=

�
n2

12

�
(6)

where fxg denotes the integer nearest to n2

12 .

Exercise 5. Show that it is not possible to have n2

12
= l+

1

2
for some integer l. Thus

n
n2

12

o
is always well-

de�ned.

Proof. Let a3(n) denote the number of solutions of n= x1+ x2+ x3, x1> x2> x3> 0. Then
we have a3(n) = p3(n+3). On ther other hand, writing y3= x3; y2= x2¡ x3; y1= x1¡ x2, we
see that a3(n) is the number of solutions of

n= y1+2 y2+3 y3; yi> 0: (7)
Therefore we have X

n=0

1

a3(n) xn=(1¡x)¡1 (1¡x2)¡1 (1¡x3)¡1: (8)

Application of the method of partial fractions, we reachX
n=0

1

a3(n)x
n =

1
6 (1¡x)3 +

1
4 (1¡x)2 +

17
72 (1¡x)

+
1

8 (1+x)
+

1
9 (1¡!x) +

1
9 (1¡!2x) (9)

where != e2�i/3=
1

2
+

3
p

2
i.

Recall that
1

1¡x =1+ x+x2+ ���+xn+ ���: (10)

Di�erentiting this we obtain

1
(1¡x)2 =1+2 x+3 x2+ ���+(n+1) xn+ ��� (11)

and
1

(1¡x)3 =2+3 � 2 �x+4 � 3 �x2+ ���+(n+2) (n+1) xn+ ��� (12)
Therefore

a3(n)¡
1

12
(n+3)2=¡ 7

72
+
(¡1)n
8

+
!n+!2n

9
: (13)

This leads to ����a3(n)¡ (n+3)2

12

����6 7
72

+
1
8
+
2
9
<
1
2

(14)

and the conclusion follows. �
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