Math 421 Q1 Winter 2017 Homework 9

Due Apr. 6, 12pm.

Total 20 points

Question 1. (10 PTs) Let the graph $G=(\{a, b, c, d, e\},\{\{a, b\},\{b, c\},\{c, d\},\{d, a\},\{e, a\},\{e, b\},\{e, c\}$, $\{e, d\}\}$).
a) (5 PTS) Draw a visualization of this graph.
b) (5 PTS) Calculate the chromatic polynomial $P_{G}(k)$. You should simplify your polynomial to the form $a_{n} k^{n}+a_{n-1} k^{n-1}+\cdots+a_{0}$.

Question 2. (5 PTs) Prove that $k^{5}-k^{3}+2 k$ cannot be a chromatic polynomial.
Question 3. (5 PTs) Prove that the coefficient of k^{n-1} in $P_{G}(k)$ is the negative of the number of edges. You can use the fact that for any graph of order n, its chromatic polynomial is $k^{n}+$ lower order terms.

