Math 421 Winter 2017 Midterm 2 Solutions

Mar. 17, 2017 1PM - 1:50pm. Total 30 Pts

NAME:
ID \#:

- Please write clearly and show enough work/explain your reasoning (this is very important!).
- No electronic devices are allowed.

Question 1. ($8 \mathbf{p t s}$) Let $a_{n+3}=3 a_{n+2}-3 a_{n+1}+a_{n}$ for all $n \geqslant 0$ and $a_{0}=a_{1}=0, a_{2}=1$. Use generating function to find the numerical value of a_{100}.

Solution. We have

$$
\begin{align*}
A(x) & :=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =x^{2}+\sum_{n=3}^{\infty} a_{n} x^{n} \\
& =x^{2}+\sum_{n=3}^{\infty}\left(3 a_{n-1}-3 a_{n-2}+a_{n-3}\right) x^{n} \\
& =x^{2}+3 \sum_{n=2}^{\infty} a_{n} x^{n+1}-3 \sum_{n=1}^{\infty} a_{n} x^{n+2}+\sum_{n=0}^{\infty} a_{n} x^{n+3} \\
& =x^{2}+3 x A(x)-3 x^{2} A(x)+x^{3} A(x) . \tag{1}
\end{align*}
$$

This gives

$$
\begin{align*}
A(x) & =\frac{x^{2}}{(1-x)^{3}} \\
& =x^{2} \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^{n} \\
& =\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^{n} . \tag{2}
\end{align*}
$$

Thus $a_{100}=\frac{100 \times 99}{2}=4950$.

Question 2. (7 pts) Find the number of different ways distributing n different balls to four boxes where an odd number of balls are in the fourth box.

Solution. The generating function is

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}=: E(x) & =\left(1+x+\frac{x^{2}}{2!}+\cdots\right)^{3}\left(x+\frac{x^{3}}{3!}+\cdots\right) \\
& =e^{3 x}\left(\frac{e^{x}-e^{-x}}{2}\right) \\
& =\frac{1}{2}\left(e^{4 x}-e^{2 x}\right) \\
& =\sum_{n=0}^{\infty} \frac{4^{n}-2^{n}}{2 \cdot n!} x^{n} . \tag{3}
\end{align*}
$$

Therefore $a_{n}=\frac{4^{n}-2^{n}}{2}$.
Question 3. (12 pts) Find the number of ways to color the eight vertices of a regular octagon with 2 colors, if
a) (6 pts) only rotations are allowed;
b) (6 pts) both rotation and fipping are allowed.

Solution. Mark the eight vertices, from the top left, counter-clockwise, $1,2, \ldots, 8$.
a) Then the eight rotations are:

- $\quad i=(1)(2) \cdots(8), c(i)=8$;
- $\quad g_{1}=(12345678), c\left(g_{1}\right)=1$;
- $g_{2}=(1357)(2468), c\left(g_{2}\right)=2$;
- $g_{3}=(14725836), c\left(g_{3}\right)=1$;
- $g_{4}=(15)(26)(37)(48), c\left(g_{4}\right)=4$;
- $g_{5}=(16385274), c\left(g_{5}\right)=1$;
- $g_{6}=(1753)(2864), c\left(g_{6}\right)=2$;
- $\quad g_{7}=(18765432), c\left(g_{7}\right)=1$.

Thus the answer is

$$
\begin{equation*}
\frac{2^{8}+4 \times 2^{1}+2 \times 2^{2}+2^{4}}{8}=36 \tag{4}
\end{equation*}
$$

b) Besides i, g_{1}, \ldots, g_{7}, we now have eight flippings:

- $f_{1}=(18)(27)(36)(45)$, and three others also having $c(g)=4$;
- $f_{5}=(1)(5)(28)(37)(46)$, and three others also having $c(g)=5$.

Therefore the answer is

$$
\begin{equation*}
\frac{2^{8}+4 \times 2^{1}+2 \times 2^{2}+2^{4}+4 \times 2^{4}+4 \times 2^{5}}{16}=30 \tag{5}
\end{equation*}
$$

Question 4. (3 pts) How many ways are there to put 16 identical balls in four identical boxes at the four vertices (one at each vertex) of a square board, allowing empty boxes, assuming that the board can freely rotate? Give your answer in numerical value.

Solution. We mark the four boxes $1,2,3,4$, counter-clockwise. We set X to be the collection of all possible ways putting 24 identical balls into four different boxes. Thus we have $|X|=\binom{16+3}{3}$. Now the symmetry group consists of identity and three rotations, $G=\left\{i, r_{1}, r_{2}, r_{3}\right\}$. We calculate

- $X_{i}=X$ so $\left|X_{i}\right|=\binom{19}{3}=969$.
- $\quad X_{r_{1}}$. We see that all four boxes must have the same number of balls, so $\left|X_{r_{1}}\right|=1$.
- $\quad X_{r_{2}}$. Boxes 1 and 3 must have the same number of balls, and boxes 2 and 4 must have the same number of balls. So $\left|X_{r_{2}}\right|$ equals the number of integer solutions to $x_{1}+x_{2}=8, x_{i} \geqslant 0$. Therefore $\left|X_{r_{2}}\right|=9$.
- $\left|X_{r_{3}}\right|=1$ similar to $X_{r_{1}}$.

Thus the answer is

$$
\begin{equation*}
\frac{969+1+9+1}{4}=245 . \tag{6}
\end{equation*}
$$

