Math 421 Q1 Winter 2017 Homework 5 Solutions

Due Mar. 2, 12pm.

Total 20 points
QUESTION 1. (5 PTS) Let a_{n} be the number of n-digit numbers formed by 1,3,5,7,9 with 3 and 7 appearing an even number of times. Find a formula for a_{n} using exponential generating functions.

Solution. The generating function is

$$
\begin{equation*}
E(x)=\left(1+x+\frac{x^{2}}{2!}+\cdots\right)\left(1+\frac{x^{2}}{2!}+\cdots\right)\left(1+x+\frac{x^{2}}{2!}+\cdots\right)\left(1+\frac{x^{2}}{2!}+\cdots\right)\left(1+x+\frac{x^{2}}{2!}+\cdots\right) \tag{1}
\end{equation*}
$$

where the five terms representing possibilities for $1,3,5,7,9$ respectively. We see that

Therefore

$$
\begin{equation*}
E(x)=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2} e^{3 x}=\frac{e^{5 x}}{4}+\frac{e^{3 x}}{2}+\frac{e^{x}}{4} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
a_{n}=\frac{1}{4}\left[5^{n}+2 \times 3^{n}+1\right] . \tag{3}
\end{equation*}
$$

QUESTION 2. (5 PTS) Use exponential generating function to find the number of ways color 6 pillars in a line with 4 colors (R, G, B, Y) such that the number of pillars colored R is odd and the number of pillars colored G is even. Give your answer in numerical value.

Solution. The generating function is

$$
\begin{gather*}
\left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)\left(1+x+\frac{x^{2}}{2!}+\cdots\right)^{2}=\frac{e^{x}+e^{-x}}{2} \frac{e^{x}-e^{-x}}{2}\left(e^{x}\right)^{2} \\
= \\
=\frac{e^{x}+e^{-x}}{2} \frac{e^{x}-e^{-x}}{2}\left(e^{x}\right)^{2}= \tag{4}
\end{gather*}
$$

It then follows that

$$
\begin{equation*}
a_{6}=4^{5}=1024 \tag{5}
\end{equation*}
$$

QUESTION 3. (5 PTs) Let a_{n} be defined through $a_{n+2}=2 a_{n+1}-a_{n}$ for all $n \geqslant 0$ and $a_{0}=0, a_{1}=1$. Use generating functions to derive the formula for a_{n}.

Solution. We set $A(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
\begin{align*}
A(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{0}+a_{1} x+\sum_{n=2}^{\infty} a_{n} x^{n} \\
& =x+\sum_{n=2}^{\infty}\left(2 a_{n-1}-a_{n-2}\right) x^{n} \\
& =x+2 \sum_{n=2}^{\infty} a_{n-1} x^{n}-\sum_{n=2}^{\infty} a_{n-2} x^{n} \\
& =x+2 \sum_{n=1}^{\infty} a_{n} x^{n+1}-\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& =x+2 x A(x)-x^{2} A(x) . \tag{6}
\end{align*}
$$

This gives

Consequently $a_{n}=n$.

$$
\begin{equation*}
A(x)=\frac{x}{(1-x)^{2}}=x \sum_{n=0}^{\infty}(n+1) x^{n} \tag{7}
\end{equation*}
$$

Question 4. (5 PTs) Let a_{n} satisfy $a_{n+1}=2 a_{n}+n$ for all $n \geqslant 0$ and $a_{0}=1$. Use generating functions to find the general formula for a_{n}.

Solution. Set $A(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$. We have

$$
\begin{align*}
A(x) & =a_{0}+\sum_{n=1}^{\infty} a_{n} x^{n} \\
& =a_{0}+\sum_{n=1}^{\infty}\left(2 a_{n-1}+(n-1)\right) x^{n} \\
& =a_{0}+2 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1}+\sum_{n=1}^{\infty}(n-1) x^{n} \\
& =a_{0}+2 x \sum_{n=0}^{\infty} a_{n} x^{n}+x^{2} \sum_{n=2}^{\infty}(n-1) x^{n-2} \\
& =a_{0}+2 x A(x)+x^{2} \sum_{n=0}^{\infty}(n+1) x^{n} \\
& =1+2 x A(x)+\frac{x^{2}}{(1-x)^{2}} . \tag{8}
\end{align*}
$$

Consequently

$$
\begin{equation*}
A(x)=\frac{1}{1-2 x}+\frac{x^{2}}{(1-2 x)(1-x)^{2}}=\frac{2}{1-2 x}-\frac{1}{(1-x)^{2}} \tag{9}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
a_{n}=2^{n+1}-n-1 \tag{10}
\end{equation*}
$$

