
Math 421 Q1 Winter 2017 Homework 4 Solutions

Due Feb. 16, 12pm.

Total 20 points.

Question 1. (5 pts) Use generating function to count the number of selections of 30 toys from 10 di�erent
types of toys if at least two but no more than �ve of each kind must be selected. You can leave the answer
as combination numbers and do not need to calculate the numerical value.

Solution. The generating function is
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Question 2. (5 pts) Use generating function method to solve the following: In how many ways can 25
identical balls be distributed to nine di�erent boxes if each box receives an odd number of balls? Give your
answer in numerical value.

Solution. The generating function is
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Question 3. (5 pts) Use generating functions to �nd the number of integer solutions to

x1+x2+x3= 16; xi> 0; x1 odd ; x2 even ; x3 prime: (5)

Give your answer in numerical value.

Solution. The generating function is
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Consequently the answer is given by

(6+1)+ (5+1)+ (4+1)+ (2+1)+ (1+1)= 23: (9)

Question 4. (5 pts) Show that the number of partitions of n into summands not divisible by 3 is equal to
the number of partitions of n where no summand occurs more than twice.

Proof. The generating function for the former is
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Thus ends the proof. �
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