# Math 421 Q1 Winter 2017 Homework 2 Solutions 

Due Jan. 26, 12pm.

Total 20 points.
Question 1. (5 pts) How many ways are there to line up $1,2, \ldots, 9$ such that 1 is somewhere to the right of 2 and 2 is somewhere to the right of 3? Justify your answer.

Solution 1. Note that if for every such line up we freely re-order $1,2,3$, then we obtain all permutations of $1,2, \ldots, 9$. Consequently the answer is $\frac{9!}{3!}=60480$.
Solution 2. There are 6 ! different ways to line up $4,5,6, \ldots, 9$. Once this is done, we insert $3,2,1$ from left to right. If we set $x_{1}$ to be the number of numbers to the left of $3, x_{2}$ to be the number of numbers between 3 and $2, x_{3}$ to be the number of numbers between 2 and 1 , and $x_{4}$ to be the number of numbers to the right of 1 , then the number of different ways of inserting $3,2,1$ is the same as the number of integer solutions to

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}=6, \quad x_{i} \geqslant 0 \tag{1}
\end{equation*}
$$

which is $\binom{9}{3}$. So the final answer is $\binom{9}{3} \cdot 6!=\frac{9!}{6}=60480$.
Solution 3. We line up $1,2, \ldots, 9$, that is, putting numbers $1,2, \ldots, 9$ into positions $1,2, \ldots 9$, in three steps.

1. Choose 6 positions from the 9 positions. There are $\binom{9}{6}$ different ways.
2. Putting $4, \ldots, 9$ into these 9 positions. There are 6 ! different ways.
3. Putting $1,2,3$ into the remaining 3 positions. There is one way to do this.

So the answer is given by the product rule: $\binom{9}{6} \cdot 6!\cdot 1=\frac{9!}{3!}=60480$.
Note. (TO THE GRADER) Getting the number 60480 is not required.
Question 2. ( 5 PTs) How many ways are there to form four blocks of four seats from 25 consecutive seats? Justify your answer. (Here as the seats are already put in a line, they are seen as different: 1st seat, 2nd seat, 3rd seat, ..., and the blocks cannot overlap.)

Solution. Let $x_{1}$ be the number of seats before the first block, $x_{2}$ be the number of seats between the first and the second blocks, $x_{3}$ be the number of seats between the second and the third blocks, $x_{4}$ be the number of seats between the third and fourth blocks, and $x_{5}$ be the number of seats after the fourth block of seats. Then we see that the answer is the same as the number of solutions to

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=25-4 \times 4=9, \quad x_{i} \geqslant 0, i=1,2,3,4,5, \tag{2}
\end{equation*}
$$

which is

$$
\begin{equation*}
\binom{9+5-1}{5-1}=\binom{13}{4}=715 \tag{3}
\end{equation*}
$$

Note. (To The Grader) Getting the number 715 is not required.
Question 3. (5 PTs) How many solutions are there for

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}=10, \quad 0 \leqslant x_{1}<5, \quad-1 \leqslant x_{2}<6, \quad 2 \leqslant x_{3}<7 ? \tag{4}
\end{equation*}
$$

Justify your answer.
Solution. Let's define the following numbers:

- $N_{0}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 0, x_{2} \geqslant-1, x_{3} \geqslant 2$. Setting $y_{1}=x_{1}, y_{2}=x_{2}+1$, $y_{3}=x_{3}-2$ we see that

$$
\begin{equation*}
y_{1}+y_{2}+y_{3}=9, \quad y_{i} \geqslant 0 \tag{5}
\end{equation*}
$$

so

$$
\begin{equation*}
N_{0}=\binom{11}{2}=55 \tag{6}
\end{equation*}
$$

- $N_{1}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 5, x_{2} \geqslant-1, x_{3} \geqslant 2$. Setting $y_{1}=x_{1}-5, y_{2}=x_{2}+1$, $y_{3}=x_{3}-2$ we see that

$$
\begin{equation*}
y_{1}+y_{2}+y_{3}=4, \quad y_{i} \geqslant 0 \tag{7}
\end{equation*}
$$

so

$$
\begin{equation*}
N_{1}=\binom{6}{2}=15 \tag{8}
\end{equation*}
$$

- $N_{2}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 0, x_{2} \geqslant 6, x_{3} \geqslant 2$. We have

$$
\begin{equation*}
N_{2}=\binom{4}{2}=6 \tag{9}
\end{equation*}
$$

- $N_{3}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 0, x_{2} \geqslant-1, x_{3} \geqslant 7$. We have

$$
\begin{equation*}
N_{3}=\binom{6}{2}=15 \tag{10}
\end{equation*}
$$

- $N_{4}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 5, x_{2} \geqslant 6, x_{3} \geqslant 2$. We have

$$
\begin{equation*}
N_{4}=0 \tag{11}
\end{equation*}
$$

- $\quad N_{5}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 5, x_{3} \geqslant 7, x_{2} \geqslant-1$. We have

$$
\begin{equation*}
N_{5}=0 \tag{12}
\end{equation*}
$$

- $N_{6}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 0, x_{2} \geqslant 6, x_{3} \geqslant 7$. We have

$$
\begin{equation*}
N_{6}=0 \tag{13}
\end{equation*}
$$

- $N_{7}:=$ the number of solutions to $x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 5, x_{2} \geqslant 6, x_{3} \geqslant 7$. We have

$$
\begin{equation*}
N_{7}=0 \tag{14}
\end{equation*}
$$

Then the answer is

$$
\begin{equation*}
N_{0}-\left(N_{1}+N_{2}+N_{3}-N_{4}-N_{5}-N_{6}+N_{7}\right)=19 . \tag{15}
\end{equation*}
$$

Note. (To the Grader) It is OK to leave $N_{0}, \ldots, N_{3}$ are combination numbers.
Question 4. (5 pts) A bag of coins contains eight nickles, four dimes, and three quarters. Assuming that coins of any one denomination are identical, in how many ways can a collection of ten coins be made up from the bagful? Justify your answer.

Solution. The answer is the same as the number of integer solutions to

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}=10, \quad 0 \leqslant x_{1} \leqslant 8, \quad 0 \leqslant x_{2} \leqslant 4, \quad 0 \leqslant x_{3} \leqslant 3 . \tag{16}
\end{equation*}
$$

Setting $N_{0}, \ldots, N_{7}$ to be the number of solutions to the following problems:

- $N_{0}: x_{1}+x_{2}+x_{3}=10, x_{1}, x_{2}, x_{3} \geqslant 0$; Thus $N_{0}=\binom{12}{2}=66$.
- $N_{1}: x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 9, x_{2}, x_{3} \geqslant 0$; Thus $N_{1}=\binom{3}{2}=3$.
- $N_{2}: x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 0, x_{2} \geqslant 5, x_{3} \geqslant 0$; Thus $N_{2}=\binom{7}{2}=21$.
- $N_{3}: x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 0, x_{2} \geqslant 0, x_{3} \geqslant 4$; Thus $N_{3}=\binom{8}{2}=28$.
- $N_{4}: x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 9, x_{2} \geqslant 5, x_{3} \geqslant 0$; Thus $N_{4}=0$.
- $N_{5}: x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 9, x_{2} \geqslant 0, x_{3} \geqslant 4$; Thus $N_{5}=0$.
- $N_{6}: x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 0, x_{2} \geqslant 5, x_{3} \geqslant 4$; Thus $N_{6}=\binom{3}{2}=3$.
- $N_{7}: x_{1}+x_{2}+x_{3}=10, x_{1} \geqslant 9, x_{2} \geqslant 4, x_{3} \geqslant 4$; Thus $N_{7}=0$.

Finally we have the answer to be

$$
\begin{equation*}
N_{0}-\left[N_{1}+N_{2}+N_{3}-N_{4}-N_{5}-N_{6}+N_{7}\right]=17 \tag{17}
\end{equation*}
$$

Note. (To the Grader) It is OK to leave $N_{0}, \ldots, N_{3}$ are combination numbers.

