
Lectures 20�21: Surfaces and Curves in Rn

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we review what we have learned and try to generalize to
obtain a theory for m-dimensional surfaces in Rn.

The material is optional.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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� In this lecture we use notation f;i :=
@f

@ui
, f;ij :=

@2f

@ui@uj
, etc.

1. n=m+1.
� Surface patch. Naturally we represent an m-dimensional surface patch in Rn as

�:U 7!Rn; �(u1; :::; um)= (�1(u1; :::; um); :::; �n(u1; :::; um)): (1)

� Tangent and normal vectors.
The tangent plane is

TpS= spanf�;1; :::; �;mg (2)

which can be identi�ed as Rm.
Since n=m+1, there are exactly two unit normal vectors. We pick one and called

it the unit normal vector and denote it by N .

� First fundamental form, measurement.
De�ne

gij := �;i ��;j ; i; j=1; 2; :::;m: (3)

We call (gij) the metric tensor. We also use (gij) to denote the m�m matrix whose
(i; j) entry is gij for every 16 i; j6m.

Then we can easily have, for vectors w=
P

i=1

m
wi�;i, w~ =

P
j=1

m
w~j�;j,

kwk=
X
i;j=1

m

gijwiwj

s
; (4)

cos\(w;w~)=
P

i;j=1
m

gijwiw~j

kwk kw~k : (5)

The �rst fundamental form is then

I =
X
i;j=1

m

gij duiduj: (6)

Also the volume of �(U) isZ
U

det(gij)
p

du1 ��� dum: (7)

� Second fundamental form.
We denote

bij := �;ij �N = bji: (8)

Then the second fundamental form isX
i;j=1

m

bij duiduj: (9)

Note that by de�nition (bij) is symmetric.

� Gauss map, Weingarten map.
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We de�ne the Gauss map G:U 7!Sm through G(�(u1; :::; um))=N(u1; :::; um). The
corresponding Weingarten map W :=¡DG is then characterized by

W

 X
i=1

m

wi �;i

!
=
X
i=1

m

wi (¡N;i): (10)

Now notice that there hold

bij= �;ij �N =¡�;i �N;j=¡�;j �N;i (11)
Thus if we write

¡N;i=
X
k=1

m

aik�;k; (12)

there would hold
bij= gjk aik=) (bij)= (gij) (aij)

T (13)

and consequently we have the matrix relation

(aij)
T =(gij)

¡1 (bij): (14)

� Curvatures.
Let �1; :::; �m be the eigenvalues of the Weingarten map. Then they solve

det((aij)T ¡� I)= 0() det[(bij)¡� (gij)] = 0: (15)

We can call �1; :::; �m �principal curvatures�, and de�ne the mean and Gaussian
curvatures as

H :=
�1+ ���+�m

m
; K :=�1 ��� �m: (16)

We easily see that

H = tr[(gij)¡1 (bij)]; K =
det(bij)
det(gij)

: (17)

Of course, the eigenvectores corresponding to each �j are the �principal vectors�. If
we have a coordinate system that is parallel to these �principal vectors�, then both
(gij) and (bij) are diagonal.

Remark 1. It is immediate that K = lim
�S;
¡!fpg
Vol(G(
))
Vol(
) .

� Christo�el symbols.
Write

�;ij=
X
l=1

m

¡ij
l �;l+ bijN: (18)

Multiply both sides by �;k we see thatX
l=1

m

¡ij
l glk = �;ij ��;k=(gik);j¡�;jk ��;i

= (gik);j¡

"X
l=1

m

¡jk
l �;l

#
��;i

= (gik);j¡
X
l=1

m

¡jk
l gli: (19)
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Therefore (using ; j to denote the uj derivative)

gik;j=
X
l=1

m

glk¡ij
l +

X
l=1

m

gli¡jk
l : (20)

Permuting i; j ; k we see that

gkj;i=
X
l=1

m

glj ¡ki
l +

X
l=1

m

glk¡ij
l ; (21)

gji;k=
X
l=1

m

gli¡jk
l +

X
l=1

m

glj ¡ki
l : (22)

Note that the terms with same color coincide. Thus we haveX
l=1

m

glk¡ij
l =

1
2
[gik;j+ gjk;i¡ gij ;k] (23)

or

¡ij
l =

1
2

X
k=1

m

(gij)lk
¡1 [gik;j+ gjk;i¡ gij ;k]: (24)

� Covariant derivative, parallel transport, geodesics.
Again we de�ne

rw :=Projection of w 0 onto TpS: (25)

Consider the curve

x(s) :=�(u1(s); :::; um(s)): (26)

Let w(s)=w1(s) �;1+ ���+wm(s)�;m be a tangent vector �eld. Then we have

rw(s) = w 0(s)¡ (w 0(s) �N)N

=
X
i=1

m

wi
0�;i+

X
i;j=1

m

wi uj
0 [�;ij¡ (�;ij �N)N ]

=
X
i=1

m

wi
0�;i+

X
i;j=1

m

wi uj
0
X
k=1

m

¡ij
k �;k

=
X
k=1

m
"
wk
0 +
X
i;j=1

m

¡ij
k wi uj

0

#
�;k: (27)

Thus the parallel transport equation reads

wk
0 +

X
i;j=1

m

¡ij
k wiuj

0 =0; k=1; 2; :::;m; (28)

and the geodesic equation reads

uk
00+

X
i;j=1

m

¡ij
k ui

0 uj
0 =0; k=1; 2; :::;m: (29)
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Remark 2. We see that (20) actually says rg=0, or equivalently,

d
ds
hw;w~i= hrw;w~ i+ hw;rw~i (30)

where h�; �i is the �rst fundamental form.

� Codazzi and Gauss equations.
Recalling (18):

�;ij=
X
l=1

m

¡ij
l �;l+ bijN; (31)

we also have

�;jk=
X
l=1

m

¡jk
l �;l+ bjkN; (32)

�;ki=
X
l=1

m

¡ki
l �;l+ bkiN: (33)

Di�erentiating the three equations with @k; @i; @j respectively, and using (18), we
arrive at

�;ijk=
X
l=1

m
(
¡ij ;k
l +

X
s=1

m

¡ij
s ¡sk

l ¡ bijakl

)
�;l+

(
bij;k+

X
l=1

m

¡ij
l blk

)
N; (34)

�;jki=
X
l=1

m
(
¡jk;i
l +

X
s=1

m

¡jk
s ¡si

l ¡ bjk ail

)
�;l+

(
bjk;i+

X
l=1

m

¡jk
l bli

)
N; (35)

�;kij=
X
l=1

m
(
¡ki;j
l +

X
s=1

m

¡ki
s ¡sj

l ¡ bki ajl

)
�;l+

(
bki;j+

X
l=1

m

¡ki
l blj

)
N: (36)

As the mixed derivatives are equal, we have

� Codazzi-Mainradi equations

bij ;k¡ bjk;i=
X
l=1

m

[¡jk
l bli¡¡ijl blk]: (37)

� Gauss equations

bjk ail¡ bij akl=¡jk;i
l ¡¡ij ;kl +

X
s=1

m

[¡jk
s ¡si

l ¡¡ijs ¡skl ]: (38)

We denote

Rijk
l :=¡jk;i

l ¡¡ij;kl +
X
s=1

m

[¡jk
s ¡si

l ¡¡ijs ¡skl ]: (39)

and

Rsijk :=
X
l=1

m

gslRijk
l : (40)
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Then there holds

Rsijk=
X
l=1

m

gsl bjk ail¡
X
l=1

m

gsl bij akl= bsi bkl¡ bsk bij: (41)

� Gauss' Remarkable Theorem.
It is clear that Rijk

l and Rsijk are invariant under local isometries. Such invariance
also holds for

aks ail¡ ais akl=
X
j=1

m

(g)sj
¡1Rijk

l : (42)

This reduces to the invariance of K = a11 a22¡ a12 a12 under local isometries when
m=2.

On the other hand, the question remains that whether the Gaussian curvature
K=det(aij) is invariant or not. Obviously, if det(aij) can be determined from all the
aks ail¡ais akl then the answer would be a�rmative. This is true when m is even. In
fact we have the following formula1:

K =
1

2m/2m! det(gij)
Ri1i2j1j2Ri3i4j3j4���Rin¡1injn¡1jn �

i1���in �j1���jn (43)

where �i1���in=�1, according to whether i1; :::; in is an even or odd permutation. The
situation is more complicated when m is odd.

We discuss the two cases now.

� m is even.

Lemma 3. Let m2N be even. Then K is a function of the collection aks ail¡
ais akl.

Proof. We notice that the collection aks ail¡ais akl is that of determinants of
all 2�2 submatrices of (aij). Since the determinant of an n�n matrix can be
represented as a sum of products between determinants of its 2�2 submatrices
and determinants of its (n¡ 2)� (n¡ 2) submatrices,2 it follows that K is a
function of aks ail¡ ais akl, i; s; k; l=1; 2; :::;m. �

� m is odd.

¡ In this case K is not a function of aks ail¡ ais akl, as can be seen from
the following simple observation: Let A~ :=¡A. Then a~ks a~il¡ a~is a~kl=
aks ail¡ ais akl for all i; s; k; l, but detA~ =¡detA.

¡ On the other hand, we now show that this is the only �freedom� detA
has once determinants of all 2� 2 submatrices are �xed. We will prove
the following.

1. Prove by C. B. Allendoerfer and W. Fenchel around 1938, and later by S. S. Chern in 1944 for abstract m-
dimensional manifolds.

2. Laplace expansion for determinants, see e.g. https://en.wikipedia.org/wiki/Laplace_expansion.
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Lemma 4. If bks bil ¡ bis bkl = aks ail ¡ ais akl for all i; s; k; l, then
detB=�detA.

Proof. We start with the case m=3. Denote by Cij the co-factors to
the entry aij, that is

Cij=(¡1)i+j det(A with ith row and jth column deleted): (44)

Let C = (Cij) be the cofactor matrix. As each Cij is the determinant
of a 2�2 submatrix of A, the matrix C is fully determined by aks ail¡
ais akl.

Now note that

A¡1=
1

detA
CT =) detC =(detA)2: (45)

Thus det A = � detC
p

. Apply the same argument to B we have
detB=� detC

p
and the conclusion follows.

For general odd m, we notice that the �m is even� result can be
applied to each Cij. Therefore

A¡1=
1

detA
CT =) (detA)m¡1=detC: (46)

As both detA and detC are real, we still conclude detA=� detC
p

. �

¡ Thus we see that under local isometries, there holds K~ =�K. We can
conclude K~ =K if there is a continuous family of local isometries con-
necting identity and the end isometry. More speci�cally, let f :Rn 7!Rn

be the local isometry between �0(u) and �1(u), if there is a continuous
function F (x; t):Rn+1 7!Rn such that

F (x; 0)=x; F (x; 1)= f(x); (47)

and furthermore for every t02(0;1), F (x; t0) is a local isometry between
�0(u) and �t0(u) :=F (�0(u); t0), then we must have K1=K0 thanks to
mean value theorem.

Question 5. Looks like this should always be true at least when the
surface patch is small enough. Proof?

� Gauss-Bonnet.
There is also generalization of Gauss-Bonnet when m is even. This is related

to some major contributions of S. S. Chern and reaches pretty far into modern
mathematics.3 Unfortunately I don't know enough to discuss this here and now.

3. https://en.wikipedia.org/wiki/Generalized_Gauss�Bonnet_theorem.
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2. m=1.
� Set-up. We consider a curve in Rn:

x(t) := (x1(t); :::; xn(t)); t2 (�; �): (48)

� Arc length. The arc length is given byZ
a

b

kx0(t)kdt: (49)

The arc length parametrization x(s) is characterized by kx0(s)k=1.

� Tangent, principal normal, curvature. Let x(s) be arc length parametrized. The tangent
vector is

T (s)= x0(s): (50)

The principal normal is then

N(s) :=
x00(s)
kx00(s)k : (51)

The curvature is then

� := kx00(s)k: (52)

Exercise 1. Let x(t) be a parametrized curve where t is not arc length parameter. Derive the
formula for �. Note that in Rn for general n there is no �cross-product�.

Note that we can also obtain �(s) as measuring �how quickly is x(s) turning away
from the tangent line�:

�= area of the parallelogram spanned by x0(s); x00(s): (53)

For future convenience we denote � by �1, and N by N1.

� Torsion and more.
We recall that torsion measures how quickly x(s) turns away from the plane

spanned by T and N . As a consequence, we have

�2 � = volume of the parallelopiped spanned by x0(s); x00(s); x000(s). (54)

From now on we denote � by �2. We denote by N2 the unit normal vector in spanfx0;
x00; x000g that is perpendicular to T ;N1 and such that the orthonormal system fT ;N1;
N2g is positive.

Exercise 2. Prove that

It is clear that we can go on to de�ne �m through

�1
m�2

m¡1����m := volume of the parallelopiped spanned by x0(s); :::; x(m+1)(s) (55)

for m= 3; 4; :::; n¡ 1, and Nm the unit normal vector in spanfx0; :::; x(m+1)g that is
perpendicular to T ; N1; :::; Nm¡1 such that the orthonormal system fT ; N1; :::; Nmg
is positive.

Thus we have n¡ 1 curvatures �1=�; �2= � ; �3; :::; �n¡1.
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� Frenet-Serret equations.

� T 0. By de�nition

T 0=�1N1: (56)

� N1
0. We di�erentiate

x000(s) = (�1 N1)
0 = �1

0 N1 + �1 N1
0 =) �1 N1

0 = x000(s) ¡ �1
0 N1 2 spanfx0; x00;

x000g: (57)

Therefore

N1
0= a T + bN1+ cN2: (58)

As N1
0?N1 there holds b=0. On the other hand, from T �N1=0 we have

�1+T �N1
0=0=) a=T �N1

0=¡�1 (59)

Using (57) again we have

x000(s)=¡�12T +�1
0 N1+�1 cN2 (60)

which gives

Volume of fx0; x00; x000g=�1
2 c: (61)

Thus c=�2, that is

N1
0=¡�1T +�2N2: (62)

� N2
0. Similarly we have

N2
0= a T + b1N1+ b2N2+ b3N3: (63)

Using T � N2 = 0 we have a = 0. Using N1 � N2 = 0 we have b1 = ¡�2. Using
kN2k=1 we have b2=0. Finally as

x(4)(s) = ¡(�12)0T ¡�12T 0+�1
00N1+�1

0 N1
0+(�1�2)

0N2+�1�2N2
0

= ¡(�12)0T ¡�13N1+�1
00N1+�1

0 (¡�1T +�2N2)

+(�1�2)
0N2+�1�2 (¡�2N1+ b3N3); (64)

we conclude

Volume of fx0; x00; x000; x(4)g = Volume of fT ; �1N1; �1�2N2; �1�2 b3N3g
= �1

3�2
2 b3=) b3=�3: (65)

Therefore

N2
0=¡�2N1+�3N3: (66)

� N3
0. Similarly we can show

N3
0=¡�3N2+�4N4: (67)

Exercise 3. Derive the full Frenet-Serret equations.
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