
Lectures 18�19: The Gauss-Bonnet Theorem

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we introduce the Gauss-Bonnet theorem. The required
section is �13.1. The optional sections are �13.2��13.8.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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1. Gauss-Bonnet in the plane

1.1. The simplest cases

Theorem 1. (Gauss-Bonnet for plane triangles) Let ABC be a triangle in the �at
plane. Then \A+\B+\C = �.

Theorem 2. (Gauss-Bonnet for plane convex polygons) Let A1A2:::Ak be a k-
polygon in a plane. Further assume that it is convex. Then the sum of its exterior angles is
2�.
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Figure 1. Sum of exterior angles of a convex polygon: �1+ ���+�6=2 �

Remark 3. (Signed exterior angles) The exterior angles of a plane polygon can
be signed. Assume that we are traveling along the boundary counterclockwise. Then if
the tangent vector is also turning counterclockwise, we say the exterior angle is positive,
otherwise it's negative.
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Figure 2. Positive and negative exterior angles: �> 0; � < 0.

Theorem 4. (Gauss-Bonnet for general plane polygons) The sum exterior angles
of a plane polygon, convex or not, is 2�.
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�Proof�. Such a general polygon is a convex polygon (its convex hull) with one or more
convex polygon �taken away�. The result follows from applying Gauss-Bonnet to each one
of them.

Take the polygon in Figure 2 as an example. Applying Gauss-Bonnet to the small triangle
A3A4A5 we see that �1+ �2= � and therefore the sum of exterior angles of the non-convex
polygon A1:::A7 is the same as that of the convex polygon A1A2A3A5A6A7.

1.2. Gauss-Bonnet for plane curvilinear polygons

� Angle = �concentrated curvature�.

�

�

�¡�
AB

Figure 3. Angle as �concentrated curvature�

Exercise 1. We �smooth� the angle through an arc (part of a circle) that is tangent to the two
�arms� at A;B respectively. Prove thatZ

A

B

� ds=� (1)
where the integral is along the arc.

Exercise 2. What if we �smooth� the angle through a di�erent family of arcs, say parabolas?

� Signed curvature for plane curves.

T

T
T

T?T?

T?
N

N N

A

C

B

Figure 4. Signed curvature �s.

For the plane vector T = (Tx; Ty), we can de�ne T? := (¡Ty; Tx) which is the
counterclockwise rotation of T by �/2. Clearly T??T . On the other hand, we have
N = �¡1

dT

ds
?T . Thus either N = T? or N = ¡T?. In the former case we de�ne the

signed curvature �s = � while in the latter case we de�ne �s = ¡�. For example in
Figure 4 �s=� at C but =¡� at A;B.
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Exercise 3. Prove that �= j�sj.

Theorem 5. (Gauss-Bonnet for simple closed plane curves) A smooth, closed,
non-self-intersecting planar curve  satis�esZ



�s(s) ds=2�: (2)

Proof.

i. We �rst prove the following. Let  be parametrized by x(s): [a; b] 7!R2 where s is the
arc length parameter. ThenZ

a

b

�s(s) ds= �0+2 k � (3)

for some k 2Z.
To see this, notice that we can denote

T (s)=x0(s)= (cos �(s); sin �(s)) (4)

where �(s) is the angle between x0(s) and x0(a).1 Taking derivative we have

x00(s)= � 0(s) (¡sin �(s); cos �(s))= � 0(s)T?(s): (5)

Therefore �s(s)= � 0(s). ConsequentlyZ
a

b

�s(s) ds= �(b): (6)

Since T (b)= (cos �(b); sin �(b))= (cos �0; sin �0), (3) follows.

ii. Thus we see that for a closed simple curve there holdsZ


�sds=2 k � (7)

for some k 2Z. Now we prove that k=1.
Wlog the parametrization is counterclociwise, that is the point x(s) moves coun-

terclockwise with respect to the interior of  as s increases. Pick s0= a < s1< ���<
sk<b= sk+1 such that Z

si¡1

si+1

�(s) ds<�; (8)

for all i. Then for any s0; s002 (si¡1; si+1), we have����Z
s0

s00

�s(s) ds

����6 Z
s0

s00

�(s) ds<�: (9)

On the other hand, we haveZ
s0

s00

�s(s) ds= �� 0+2 k � (10)

1. Rigorously speaking, it is the angle between x0(a) and the vector that is the parallel transported x0(s).
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where �� 02 (¡�; �] is the angle between T (s 00) and T (s0).

Figure 5. Left: �� 0> 0; Right: �� 0< 0.

Noticing that j�� 0+2 k � j>� for all k=/ 0, we conclude thatZ
s0

s00

�s(s) ds= �� 0; (11)

when s0; s00 are close enough.
Now let P be the polygon with vertices x(s0); x(s1); :::; x(sk); x(sk+1)=x(s0). By

the mean value theorem2 there are s00 2 [s0; s1]; s10 2 [s1; s2]; :::; sk0 2 [sk; sk+1] such that
x0(si

0) kx(si)x(si+1). Thanks to the arguments (8)�(11) we see thatZ
si
0

si+1
0

�s(s) ds= the exterior angle at x(si): (12)

Now the conclusion (2) follows from Theorem 4, the the polygon Gauss-Bonnet the-
orem �

Remark 6. In the above proof, besides (8), we also require the partition s0; :::; sk be such
that the polygon P is simple, that is does not intersect itself.

Question 7. Can this always be done through making si+1¡ si small enough? If not, can
we prove Gauss-Bonnet for polygons that intersect itself?

Theorem 8. (Gauss-Bonnet for curvilinear polygons) Let �1; :::; �k be the exterior
angles. Then Z



�sds+
X
i=1

k

�i=2 �: (13)

Proof. Left as exercise. �

2. Keep in mind that the mean value theorem does not hold for space curves.
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2. Surface Gauss-Bonnet

2.1. The plane curve case revisited: A mechanical point of view

The role of surface curvature can be understood through the following mechanical analogy.

� Curvature = centrifugal force.
Consider a particle moving along a plane curve  with unit speed. Then the

position of this particle gives the arc length parametrization of : x(s). Then the
velocity and acceleration are

v(s)=x0(s); a(s)=x00(s): (14)

If we denote ns(s) := [x0(s)]?, there holds

a(s)=�s(s)ns(s): (15)

Thus we see that �s(s) is the �signed� magnitude of force. Consequently

2 �=

Z


�s(s) ds= �signed total� of work done. (16)

� Surface curvature = �Gravity� = �extra� centrifugal force.
Now consider a particle moving along a surface curve. Then part of the the cen-

trifugal force is provided by �gravity��the force that keeps the particle on the surface.
Thus we conjecture that

2�= �signed total� of work by gravity+�signed total� of work by other forces: (17)

Recall that on a surface, the trajectory of a particle moving under gravity only satis�es
�g=0 where �g is the geodesic curvature. On the other hand, the total work done by
gravity should be related to the �total mass� enclosed by the curve. Thus we reach

2 �=

Z



curvature dS+
Z


�g(s) ds (18)

where 
 is the part of the surface enclosed by .

Exercise 4. Let S be a developable surface. Let  be a curve on S. Let ~ be the curve on the
plane that is the ��attened� S. Prove that for any p2S with p~ the corresponding point on the
plane, there holds �g(p)=�s(p~).

Remark 9. There are other physical explanations for Gauss-Bonnet, for example see here. A
more detailed version can be found in A �bicycle wheel� proof of the Gauss-Bonnet theorem,
Mark Levi, Expo. Math. 12 (1994), 145�164.

2.2. Gauss-Bonnet on surfaces

Theorem 10. Let S be a surface and  � S be a simple closed curve. Let 
 be the part of
S that is enclosed by . There holdsZ




K dS+

Z


�g ds=2 �: (19)
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Exercise 5. Let S be the unit sphere. Let  � S be an arbitrary simple closed curve. Then  divides
S into two regions 
N ;
S. By Theorem 10 we haveZ


N

K dS+
Z


�g ds=2 �=
Z

S

K dS+
Z


�g ds=)
Z

N

K dS=
Z

S

K dS (20)

which means area(
N)= area(
S). This is absurd. Explain.

Proof. We divide the proof of Theorem 10 into several steps.

i. Set-up. We parametrize  as x(s)=�(u(s); v(s)) where s is the arc length parameter.
Let the range of s be from 0 to L. Denote by W (s) a parallel tangent unit vector
�eld along . Let �(s) be the angle between x0(s) and W (s).

Let NS(s) be the unit normal of S. Then we see that W (s);NS(s);W (s)�NS(s)
form a right-handed orthonormal frame, and consequently

x0(s)= (cos �(s))W (s)+ (sin �(s))W (s)�NS(s): (21)

ii. The role of �g . Taking derivative of (21) we have

x00(s) = � 0(s) [(¡sin �(s))W (s)+ (cos �(s) )W (s)�NS(s)]

+(cos �(s))W 0(s)+ (sin �(s))W 0(s)�NS(s)

+(sin �(s))W (s)�NS
0 (s): (22)

As W (s) is parallel along , we see that the black terms are tangent to TpS, the grey
term is zero, and the green terms are parallel to NS(s). Recalling the de�nition of
the normal and geodesic curvatures, we see that

�g(s)= � 0(s): (23)

Consequently, we have Z


�g ds=2�¡� (24)

where � is the angle between W (0) and W (L).

iii. The role of K . Due to the presence of the surface curvature, we do not always have
W (0)=W (L), that is �=0, in (24).

We take �(u; v) to be a geodesic surface patch, with �rst fundamental form
du2+G(u; v) dv2. Let e1 :=�u; e2 :=

�v

G1/2
. Then we have

W (s)= [cos �(s)] e1+ [sin �(s)] e2: (25)

This leads to

W 0(s)= � 0(s) [(¡sin �) e1+(cos �) e2] + (cos �) e10 +(sin �) e20 : (26)

As W is parallel along  and is of unit length, we have W 0?[(¡sin �) e1+(cos �) e2].
Thus

0 = W 0(s) � [(¡sin �) e1+(cos �) e2]
= � 0(s)+ [(cos �)2 e10 � e2¡ (sin �)2 e20 � e1]
= � 0(s)¡ e20 � e1: (27)
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Note that we have used e10 � e2=¡e20 � e1.
Now we have, setting  0 to be the closed plane curve (u(s); v(s)) and 
0 the region

enclosed by  0, by Green's Theorem,Z
0

L

e1 � e20 =

Z
0

L

(e1 � e2;u)u0+(e1 � e2;v) v 0

=

Z
 0
(e1 � e2;u) du+(e1 � e2;v) dv

=

Z

0
[e1;u � e2;v¡ e1;v � e2;u] dudv: (28)

Substituting e1 :=�u; e2 :=
�v

G1/2
into the above, we have the integrand to be

�uu �
�vv

G1/2
¡ 1
2
(�uu ��v)Gv

G3/2
¡ �uv ��uv

G1/2
+
1
2
(�uv ��v)Gu

G3/2
: (29)

As E=1;F=0; we have

¡11
1 =¡11

2 =¡12
1 =0;¡12

2 =
Gu

2G
;¡22

1 =¡Gu

2
;¡22

2 =
Gv

2G
: (30)

Consequently

�uu ��vv=LN; �uu � �v=0; (31)

�uv ��uv=
1
4
Gu
2

G2
+M2; �uv ��v=

Gu

2G
: (32)

We see that

e1;u � e2;v¡ e1;v � e2;u=
LN¡M2

G1/2
=K EG¡F2

p
: (33)

Therefore Z

0
[e1;u � e2;v¡ e1;v � e2;u] dudv=

Z



K dS (34)

and the proof ends. �

Remark 11. The proof of Theorem 10 here is not fully rigorous (can you spot the gaps?).
Yet it is intuitive and consistent with our proof in the plane case.

Exercise 6. Read through the proof in �13.1 of the textbook and understand every detail.

Remark 12. By (19) it is easy to see that if  is a closed geodesic, then necessarilyR


K dS=2 �. Consequently there is no closed geodesic on a surface with K60 everywhere.
Exercise 7. Let S be a cylinder. Then clearly there are closed geodesics. Can you explain this?

Theorem 13. (Curvilinear polygons on a surface) For a curvilinear polygon on a
surface S, we have

2 �=

Z


�g ds+
X

�i+

Z



K dS (35)

where �i are the exterior angles at the vertices.3
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3. Gauss-Bonnet on compact surfaces

3.1. Integration on compact surfaces

� Recall that we can integrate on a surface patch throughZ
S

f dS=

Z
U

f(�(u; v)) k�u��vkdudv: (36)

What if the surface cannot be covered by one single surface patch? In particular, how
do we integrate on a compact surface S?

Exercise 8. Show that a compact surface cannot be covered by one single surface patch.

� The idea is �partition of unity�. Assume that S is covered by N surface patches �1; :::;
�N, where �i:Ui 7!S with 
i= �(Ui). Note that each 
i is open and [i=1N 
i=S.

For every 
i, let 
~ i := 
i ¡ [j=/ i
j. Then 
~ i is closed. Let �
¡
U~i
�
= 
~ i. We

see that "i := dist
¡
U~i; @Ui

�
/3 > 0.4 We de�ne Wi :=

�
x 2 Uij dist

¡
x; U~i

�
6 "i

	
and

W~i :=
�
x2Uijdist

¡
x; U~i

�
6 2 "i

	
.

Next take a smooth even function �> 0 such that

2�

Z
0

1
�(t) t dt=1; �(t)=

�
1 jtj< 1/4
0 jtj> 3/4

: (37)

We see that the function �(u; v) := �
¡

u2+ v2
p �

satis�esZ
R2

�(u; v) dudv=2�

Z
0

1
�(r) r dr=1 (38)

and �(u; v)=

(
1 u2+ v2
p

< 1/4

0 u2+ v2
p

> 3/4
. Now de�ne

�i(u; v) :=
1

"i
2 �

�
u
"i
;
v
"i

�
: (39)

Let the function �i(u; v) :=

�
1 (u; v)2Wi

0 (u; v)2/Wi
. De�ne

�i(u; v) :=

Z
R2

�i(u¡u0; v¡ v 0) �i(u0; v 0) du0dv 0: (40)

Then �i(u; v) is smooth and satisfy

�i(u; v)=

8><>:
1 (u; v)2U~i
>0 (u; v)2W~i
=0 (u; v) outside W~i

: (41)

3. Note that our �i here are di�erent from those in �13.2 of the textbook.

4. If Ui=R2 just set "i=1.
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Finally de�ne 	i=
�i ��i

¡1P
j=1
N �j ��j

¡1 . We see that

X
i=1

N

	i=1 all over S: (42)

Such f	ig is called a �partition of unity� of S.

� With such �partition of unity� available, we can simply de�neZ
S

f dS :=
X
i=1

N Z
Ui

Fi(�i(u; v)) k�i;u��i;vkdudv (43)

where

Fi= f 	i: (44)

3.2. Euler number

Definition 14. Let P be a polygon. De�ne the Euler number � as

�=V ¡E+F (45)

where V is the number of vertices, E the number of edges, and F the number of faces.

Remark 15. It turns out that � is a �topological invariant�. It is easy to convince ourselves
that deforming a polygon would not change �. Thus � depends only on the �shape� of the
polygon. A few examples.

� If we can �blow up� the polygon into a sphere, then �=2. In other words, �(sphere)=
2.

To see this, we do the following operations.

i. Take away one face and ��atten� the the �polytope with a hole�. Thus F 7!
F ¡ 1 and E; V remain the same.

ii. Let e be any edge that is not on the boundary. There are two situations.

a) Both ends of e have more than two edges connected to the vertices.
In this case we take e away. then the two adjacent faces are merged
together. Thus after this operation we have E 7!E¡1 and F 7!F ¡1,
while V remains the same.

b) One or both ends of e is connected to one other edge. Then we merge
this edge with e. When there is only one such end, the result is E 7!
E ¡ 1; V 7! V ¡ 1, when there are two such ends, we have E 7!E ¡ 2,
V 7!V ¡ 2.

Note that in either case, V ¡E+F stays unchanged.

iii. Keep doing step ii until there is no interior edge anymore. Then we would have
a polygon, for which V =E;F =1. Thus the original � should be 1+ 1=2.

� �(torus)= 0.
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The key di�erence here is that we still cannot �atten the �polytope with a hole�
after �taking one face away�. Intuitively, if we �cut� the torus and �straighten� it into
a cylinder, then V ¡ E stays the same while F 7! F + 2. But a cylinder (of �nite
height) is topologically equivalent to the sphere so

V +F +2¡E=2=) �=V ¡E+F =0 (46)
for the torus.

� �(cupwith handle)=¡2.
This is equivalent to connecting two torus together.

3.3. Gauss-Bonnet on compact surfaces

Theorem 16. 5Let S be a compact surface. ThenZ
S

K dS=2 ��: (47)

Remark 17. If S is an apple, then the total Gaussian curvature is 2 �. Now take a pen to
poke it. During the process the total Gaussian curvature stays 2 �. But the moment you
poke it through, it becomes 0.

Proof. We sketch the idea. Intuitively, we can divide S into �nitely many triangles T1; :::;
TF and thus S becomes a �curvilinear polygon� with F faces. We note that as each face has
three edges and each edge is shared by two faces, there holds E =

3F

2
. On each triangle we

apply Theorem 13:Z
Ti

K dS+

Z
ei1[ei2[ei3

�g ds+�i1+�i2+�i3=2� (48)

where ei1; ei2; ei3 are the three edges and �i1; �i2; �i3 are the three exterior angles. Now
summing over i=1; 2; :::; F we see that6X

i

Z
Ti

K dS=

Z
S

K dS;
X
i

Z
ei1[ei2[ei3

�g ds=0: (49)

Now we sum up the exterior angles through a di�erent way of counting. Let A1; :::; AV be
the vertices. Denote by Ei the number of edges connected to each Ai. Then we see that,

sum of exterior angles at Ai=Ei �¡
X

interior angles at Ai=(Ei¡ 2)�: (50)

Therefore (note that each edge connects two vertices)X
all exterior angles¡2F� =

X
i=1

V

(Ei¡ 2) �¡ 2F�

=

 X
i=1

V

Ei

!
�¡ 2V�¡ 2F�

= 2E�¡ 2V�¡ 2F�
= 2� (E ¡ V ¡F )=¡2 ��: (51)

5. Theorem 13.4.5 of the textbook.
6. Intuitively, we can simply take the edges to be geodesics, then �g=0 and the edge terms vanish.
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The conclusion then follows. �

Remark 18. We see that the Gaussian curvature is invariant under local isometries, but
the integral of the Gaussian curvature over a compact surface is even more invariant�it only
depends on the �shape� of the surface.
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