
Lectures 16�17: Gauss's Remarkable Theorem

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

Much of the material in this lecture is optional. On the other hand, it is
bene�cial to work through the notes as the calculations etc. here can serve
as good review of the concepts/formulas we studied in the past two months.

The required textbook sections are �10.1�10.2. The optional sections are
�10.3�10.4.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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1. Gauss' Remarkable Theorem

1.1. Motivation

We have seen that given a surface, one can calculate its �rst and second fundamental forms

Edu2+2Fdudv+Gdv2 and Ldu2+2Mdudv+Ndv2; (1)

as well as the Christo�el symbols ¡ijk , de�ned through

�uu = ¡11
1 �u+¡11

2 �v+LN;

�uv = ¡12
1 �u+¡12

2 �v+MN;

�vv = ¡22
1 �u+¡22

2 �v+NN:

(2)

We have also seen that the Christo�el symbols are not independent quantities and can be
calculated from E; F;G. Now the question is, are E; F; G and L;M; N independent? In
other words, given six functions E(u; v); :::;N(u; v), is there always a surface S having (1)
as its �rst and second fundamental forms?

For example, is there a surface with �rst and second fundamental forms du2+ cos2u dv2

and cos2u du2+dv2? To answer this, we need to �rst understand whether E;F;G;L;M;N
are related.

1.2. Codazzi-Mainradi equations and Gauss equations

Theorem 1. Let S be a surface and let E du2 + 2 F du dv +G dv2, L du2+ 2M du dv +
N dv2, and ¡ij

k be its �rst, second fundamental forms, and Christo�el symbols. Then there
hold

� the Codazzi-Mainradi equations

Lv¡Mu = L¡12
1 +M (¡12

2 ¡¡111 )¡N¡11
2

Mv¡Nu = L¡22
1 +M (¡22

2 ¡¡121 )¡N¡12
2 ; (3)

� and the Gauss equations

EK = (¡11
2 )v¡ (¡122 )u+¡11

1 ¡12
2 +¡11

2 ¡22
2 ¡¡121 ¡112 ¡ (¡122 )2;

FK = (¡12
1 )u¡ (¡111 )v+¡12

2 ¡12
1 ¡¡112 ¡221 ;

= (¡12
2 )v¡ (¡222 )u+¡12

1 ¡12
2 ¡¡221 ¡112 ;

GK = (¡22
1 )u¡ (¡121 )v+¡22

1 ¡11
1 +¡22

2 ¡12
1 ¡ (¡121 )2¡¡122 ¡221 :

(4)

Proof. By (2) we have

(¡11
1 �u+¡11

2 �v+LN)v=�uuv=�uvu=(¡12
1 �u+¡12

2 �v+MN)u (5)

and

(¡12
1 �u+¡12

2 �v+MN)v=�uvv=�vvu=(¡22
1 �u+¡22

2 �v+NN)u: (6)
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Now calculate

(¡11
1 �u+¡11

2 �v+LN)v = (¡11
1 )v�u+¡11

1 �uv+(¡11
2 )v�v+¡11

2 �vv+LvN +LNv

= (¡11
1 )v�u+(¡11

2 )v�v+LvN

+¡11
1 (¡12

1 �u+¡12
2 �v+MN)

+¡11
2 (¡22

1 �u+¡22
2 �v+NN)

+L (¡a21�u¡ a22�v)
= [(¡11

1 )v+¡11
1 ¡12

1 +¡11
2 ¡22

1 ¡ a21L]�u
+[(¡11

2 )v+¡11
1 ¡12

2 +¡11
2 ¡22

2 ¡ a22L]�v
+[Lv+¡11

1 M+¡11
2 N]N: (7)

Here recall that
�
a11 a21
a12 a22

�
=

�
E F
F G

�¡1� L M
M N

�
.

Similarly we calculate

(¡12
1 �u+¡12

2 �v+MN)u = (¡12
1 )u �u+¡12

1 �uu+(¡12
2 )u�v+¡12

2 �uv+MuN +MNu

= (¡12
1 )u �u+(¡12

2 )u �v+MuN

+¡12
1 (¡11

1 �u+¡11
2 �v+LN)

+¡12
2 (¡12

1 �u+¡12
2 �v+MN)

+M (¡a11�u¡ a12�v)
= [(¡12

1 )u+¡12
1 ¡11

1 +¡12
2 ¡12

1 ¡ a11M]�u

+[(¡12
2 )u+¡12

1 ¡11
2 +¡12

2 ¡12
2 ¡ a12M] �v

+[Mu+¡12
1 L+¡12

2 M]N: (8)

As f�u; �v;N g form a basis of R3, there must hold

(¡11
1 )v+¡11

1 ¡12
1 +¡11

2 ¡22
1 ¡ a21L = (¡12

1 )u+¡12
1 ¡11

1 +¡12
2 ¡12

1 ¡ a11M; (9)
(¡11

2 )v+¡11
1 ¡12

2 +¡11
2 ¡22

2 ¡ a22L = (¡12
2 )u+¡12

1 ¡11
2 +¡12

2 ¡12
2 ¡ a12M; (10)

Lv+¡11
1 M+¡11

2 N = Mu+¡12
1 L+¡12

2 M: (11)

We see that (11) immediately gives the �rst Codazzi-Mainradi equation. (9) yields

a11M¡ a21L=(¡12
1 )u¡ (¡111 )v+¡12

2 ¡12
1 ¡¡112 ¡221 ; (12)

which becomes the second Gauss equation after we notice the following.

a11M¡ a21L = ¡
��

a11 a21
a12 a22

��
N ¡M
¡M L

��
(12)

= ¡
��

E F
F G

�¡1� L M
M N

��
N ¡M
¡M L

��
(12)

= ¡(LN¡M2)

��
E F
F G

�¡1�
(12)

= ¡(LN¡M2) (EG¡F2)¡1
�

G ¡F
¡F E

�
(12)

=
LN¡M2

EG¡F2
F=FK: (13)

Math 348 Fall 2016

3



Here we use
�
a b
c d

�
(ij)

to denote the (i; j) component of the matrix
�
a b
c d

�
.

Similar calculations con�rm the rest of the equations. �

Remark 2. As ¡ijk can be calculated using E; F; G, the Codazzi-Mainradi and Gauss
equations can be seen as equations for L;M;N given E;F;G.

Remark 3. It can be shown that as long as E;F;G;L;M;N satisfy the Codazzi-Mainradi
and Gauss equations, with ¡ij

k calculated from E; F; G as we have seen before, and with
K :=

LN¡M2

EG¡F2
, then there is a unique surface patch � with E du2 + 2 F du dv + G dv2,

L du2+ 2M du dv +N dv2 as its �rst and second fundamental forms, ¡ijk as its Christo�el
symbols, and K as its Gaussian curvature.1

Example 4. 2Is there a surface with the �rst and second fundamental forms du2+ cos2u dv2

and cos2udu2+dv2?
We see that E=1;F=0;G= cos2u;L= cos2u;M=0;N=1. Now we calculate ¡ijk . As it

is too hard to remember the formulas, we start from the ��rst principle� (2):

�uu = ¡11
1 �u+¡11

2 �v+LN;

�uv = ¡12
1 �u+¡12

2 �v+MN;

�vv = ¡22
1 �u+¡22

2 �v+NN:

(14)

We have

¡11
1 =¡11

1 E+¡11
2 F=�uu � �u=

1
2
Eu=0: (15)

cos2u¡112 =¡11
1 F+¡11

2 G= �uu � �v=(�u ��v)u¡
1
2
(�u ��u)v=0 (16)

Thus ¡111 =¡11
2 =0. Similarly we can calculate

¡12
1 =0; ¡12

2 =¡tanu; ¡22
1 = cosu sinu; ¡22

2 =0: (17)

Now we see that
Mv¡Nu=0 (18)

while
L¡22

1 +M (¡22
2 ¡¡121 )¡N¡12

2 = cos3u sinu+ tanu=/ 0: (19)

Thus the second Codazzi-Mainradi equation is not satis�ed and consequently there is no
surface with the �rst and second fundamental forms du2+ cos2udv2 and cos2udu2+dv2.

1.3. Gauss' remarkable theorem

Theorem 5. (Gauss' Theorema Egregium) The Gaussian curvature of a surface is
preserved by local isometries.

Proof. This follows immediately from the Gauss equations together with the fact that
if f : S 7! S~ is a local isometry, then the �rst fundamental forms for �(u; v) and �~(u;

v) := f(�(u;v)) are identical, and consequently the two surfaces have the sameE;F;G;¡ijk . �

1. Theorem 10.1.3 of the textbook.

2. Exercise 10.1.2 of the textbook.
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Remark 6. One can calculate an explicit formula for K using E;F;G only3:

K =

det

0BBB@
¡1

2
Evv+Fuv¡ 1

2
Guu

1

2
Eu Fu¡ 1

2
Ev

Fv¡ 1

2
Gu E F

1

2
Gv F G

1CCCA¡det

0BBB@
0

1

2
Ev

1

2
Gu

1

2
Ev E F

1

2
Gu F G

1CCCA
(EG¡F2)2

: (20)

2. Surfaces of constant Gaussian curvature

2.1. Surfaces with K=0

Theorem 7. Let S be a surface covered by one single surface patch. Assume that its Gaussian
curvature K =0 everywhere. Then S is isometric to an open subset of a plane.

Proof. We have seen in Lecture 13 (Proposition 12) that such S must be a ruled surface.
Thus we can assume the surface patch to be �(u;v)=�(u)+v l(u) with klk=k�0k=1. Then
we have

�u=�0(u)+ v l 0(u); �v= l(u): (21)

Consequently

E=1+2 v �0 � l 0+ v2 kl 0k2; F=�0 � l; G=1: (22)

(20) now gives

0 = det

0B@ ¡kl 0k2 1

2
Eu Fu¡ 1

2
Ev

0 E F
0 F 1

1CA¡det

0BB@ 0
1

2
Ev 0

1

2
Ev E F

0 F 1

1CCA
= ¡kl 0k2 (E¡F2)+

�
1
2
Ev

�
2

= ¡kl 0k2 (1+ 2 v (�0 � l 0)+ v2 kl 0k2¡ (�0 � l)2)+ (�0 � l 0+ v kl 0k2)2

= ¡kl 0k2 (1¡ (�0 � l)2)+ (�0 � l 0)2: (23)

We discuss two cases.

i. l 0= 0. In this case � is an open subset of a generalized cylinder and is isometric to
an open subset of a plane.

ii. l 0=/ 0. Let l 0̂ := l 0

kl 0k , from (23) we have

1¡ (�0 � l)2¡ (�0 � l 0̂)2=0: (24)

As �0 is a unit vector and so are l; l 0̂ and furthermore l?l 0̂, we see that �0 � (l� l 0̂)=0
and therefore �0 � (l � l 0) = 0. From �3 of Lecture 9 we see that this implies S is
developable and consequently is isometric to an open subset of a plane. �

3. Corollary 10.2.2 of the textbook.
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2.2. Surfaces with K> 0 constant

Theorem 8. Let S be a surface covered by one single surface patch. Assume that its Gaussian
curvature K is a positive constant. Then S is isometric to an open subset of a sphere.

Proof. Clearly it su�ces to consider the case K=1.

Exercise 1. Rigorously justify this.

We �rst re-parametrize the surface so that the fundamental forms are simple.

Proposition 9. (Proposition 9.5.1 of the textbook) Let p0 2 S.
Then there is a neighborhood of p that can be parametrized so that the �rst
fundamental form is du2+G(u; v) dv2 where G(u; v) is a smooth function
satisfying (p0=�(0; 0))

G(0; v)= 1; Gu(0; v)= 0: (25)

Proof. Let (v) be a geodesic passing p with v the arc length parameter.
At each point on , let ~v(u) be the geodesic passing that point and is
perpendicular to . Further assume that u is also the arc length parameter.

Exercise 2. Explain why there is a neighborhood of p that is fully covered by these
~v(u)'s.

Exercise 3. Explain why each point in this neighborhood belongs to exactly one
~v(u).

Thus we obtain a surface patch �(u; v) = ~v(u). As for each v, ~v(u) is
arc length parametrized, there holds k�uk=1=)E=1. To show that F=0,
we notice that by construction

�u(0; v) ��v(0; v)=0: (26)

On the other hand, note that along ~v(u), we have u0=1; v 0=0. The geodesic
equations

(Eu0+F v 0)u =
1
2
(u0; v 0)

�
E F
F G

�
u

�
u0

v 0

�
(27)

(Fu0+G v 0)u =
1
2
(u0; v 0)

�
E F
F G

�
v

�
u0

v 0

�
(28)

now become

0= 0 and Fu=0: (29)

Consequently F=0 for all u; v.

Exercise 4. Explain, using the intuition �geodesics are shortest paths�, why �(u0; v)
has to be perpendicular to �(u; v0).

Finally, �v(0; v) =
d

dv
so G(0; v) = 1. Then (27) applied to the geodesic

(v)=�(0; v) gives Gu(0; v)=0. �

Geodesic coordinates
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(20) now gives

¡1
2
GuuG+

1
4
Gu
2=G2: (30)

Setting G= g2 we reach

guu+ g=0=) g(u; v)=A(v) cosu+B(v) sinu: (31)

Thanks to (25) there holds g(0;v)=1; gu(0; v)=0 which give A(v)=1;B(v)=0. Consequently
we have the �rst fundamental form to be

du2+ cos2udv2 (32)

which is exactly the �rst fundamental form of S2 in spherical coordinates. �

2.3. Surfaces with K< 0 constant

Theorem 10. Let S be a surface covered by one single surface patch. Assume that its
Gaussian curvature K is a negative constant. Then S is isometric to an open subset of a
pseudosphere.

Consider a surface of revolution �(u; v) = (f(u) cos v; f(u) sin v; g(u))
where f > 0 and (f 0)2+(g 0)2=1.

Exercise 5. Show that K =¡f 00

f
.

WhenK=¡1, we have f 00¡ f=0=) f(u)=a eu+ b e¡u. Such a surface
is called a �pseudosphere�. For example when a=1; b=0 we have

g(u)=

Z
1¡ e2u

p
du= 1¡ e2u

p
¡ ln

¡
e¡u+ e¡2u¡ 1

p �
: (33)

Exercise 6. Draw a sketch of the pseudosphere in this case.

The pseudosphere

Proof. (of Theorem 10) Same idea as the proof of Theorem 8. See p.258 of the text-
book. �

2.4. Compact surfaces

Theorem 11. 4Every connected compact surface whose Gaussian curvature is constant is a
sphere.

Exercise 7. Every compact surface has a point where K > 0. (Hint: Consider p 2 S that is furthest
away from the origin)

Proof. Consider the function J = (�1 ¡ �2)2. Let p be where J reaches maximum�this is
possible as J is continuous. If this maximum is 0 then we have �1=�2 and S must be part of
a sphere. If not, thanks to �1�2=K is constant, there must hold that �1 is at local maximum
and �2 at local minimum at p. We reach contradiction using the following lemma.

4. Theorem 10.3.4 of the textbook.
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Lemma 12. 5Let �:U 7!R3 be a surface patch containing a point p that is not an umbilic6.
Let �1> �2 be the principal curvatures of � and suppose that �1 has a local maximum at p
and �2 has a local minimum at p. Then K(p)6 0. �

Proof. (of Lemma 12) Taking a small neighborhood of p such that �1>�2 in it. Take the
coordinate system along the principal vectors so that the two fundamental forms are

Edu2+Gdv2; Ldu2+Ndv2: (34)

Thus we have �1=
L

E
and �2=

N

G
.

Exercise 8. What about �1>�2?

Taking derivatives of the Codazzi-Mainradi equations we obtain

Lv=
1
2
Ev

�
L
E
+

N
G

�
; Nu=

1
2
Gu

�
L
E
+

N
G

�
(35)

and consequently

Ev=

�
2E

�2¡�1

�
(�1)v; Gu=

�
2G

�1¡�2

�
(�2)u: (36)

At p we have (�1)v=(�2)u=0=)Ev=Gu=0 which leads to

K(p) = ¡ 1

2 EG
p

�
@
@u

�
Gu

EG
p

�
+

@
@v

�
Ev

EG
p

��
= ¡Guu+Evv

2EG

= ¡G (�2)uu¡E (�1)vv
EG (�1¡�2)

6 0; (37)

where the last inequality comes from �1 taking a local maximum and �2 taking a local
minimum at p . �

Remark 13. Similar to the proof of Theorem 11 we can show that a compact surface with
K> 0 everywhere and constant H is a sphere.

5. Lemma 10.3.5 of the textbook.

6. that is �1=/ �2.
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