Math 348 Fall 2016

LECTURES 16—-17: GAUSS’S REMARKABLE THEOREM

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

Much of the material in this lecture is optional. On the other hand, it is
beneficial to work through the notes as the calculations etc. here can serve
as good review of the concepts/formulas we studied in the past two months.

The required textbook sections are §10.1-10.2. The optional sections are
§10.3-10.4.
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Differential Geometry of Curves & Surfaces

1. Gauss’ Remarkable Theorem

1.1. Motivation

We have seen that given a surface, one can calculate its first and second fundamental forms
Edu?+2F dudv+ Gdo? and Ldu?+2Mdudv + Ndo?, (1)

as well as the Christoffel symbols Ffj,

defined through

Oyu = Fllau—i_F%lav—i_LNa
Ouv = F120u+r%2UU+MN7 (2)
Opy = F220u+F%2UU+NN'

We have also seen that the Christoffel symbols are not independent quantities and can be
calculated from [E, F, G. Now the question is, are E, IF, G and L., M, N independent? In
other words, given six functions E(u, v), ..., N(u, v), is there always a surface S having (1)
as its first and second fundamental forms?

For example, is there a surface with first and second fundamental forms du? + cos?u dv?
and cos?u du? 4 dv?? To answer this, we need to first understand whether E, F, G, L, M, N
are related.

1.2. Codazzi-Mainradi equations and Gauss equations

THEOREM 1. Let S be a surface and let E du® + 2 F dudv + G dv?, L du?+ 2 Mdu dv +
N dv?, and Ffj be its first, second fundamental forms, and Christoffel symbols. Then there
hold

e the Codazzi-Mainradi equations

L,—M, = LT+M({,—TI1)-NTH
M, — N, = LTL+M(I%—Tl)—NI2,

e and the Gauss equations

EK = (Th)e— (TT2)u+ 11T+ [ — T — (M),
FK = (Tig)u— (Ti1)e +F12 [y — I T, (4)
= (Ia)o— (T32)u+ T2y — 5T,
GK = (F%2>u (F%z) + F22 1430 — (F%z)z — I,
Proof. By (2) we have
(F%lau_l_r%l UU+LN) = Oyuv = Ouvu = (F120-u+F120-v+MN) (5)
and
<F120u+F%QUU+MN> = Oyvv — Oppu — (F220u+F220v+NN) (6)
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Now calculate

(F}lau—FF%lav—l—LN)v =
- (F%l)v oyt (Fﬁl)v Oyt ]Lv N

Here recall that < 011 021 >:<

a2 a22

Similarly we calculate

(F%Z Ou+ F%Z UU+MN)u

(F%l)v Ou + F%l Oy + (F%)v Oy + F%l Oy + ILUN + ILNv

+T1 (Ti20u+ 200+ MN)

+T%H (T320u+T30,+NN)

+1L (—ag 04 — a2 0y,)
[(T11)o+T1iTi24+ T Doy — a2 L] oy,
+[(TH)v+ 1 T+ TH D — as L] 0y
—l—[lLU—I-FhIM—I—F%l N|N.

EF\-1/L M
F G M N /°

(Ti2)u 0w+ 1200+ (T12)u 0w+ T20us + My N +MN,
(T12)uou+ T12)uow + M, N

+T12 (Thou+THo,+LN)

+I%2 (T20y+ 10, + MN)

+M (—a11 04 — ar20y)

[(T12)u+ T2l + T12 T — a;n M] oy,

+[(TT)u+ T2 + 52T — a2 M o,

+[M, + T  L+T%,M] N.

As {o,,0,, N} form a basis of R3, there must hold
(Ti)o+ T T+ TH T —an L = (Tio)u+ el + Tl —an M,
(F%l)v + T T+ 1315 —anl = (F%2)u + Tl + T4 T% — a1 M,

We see that (11) immediately gives the first Codazzi-Mainradi equation. (9) yields
a1 M — ag L= (T12)y — (T11)e + Tl M1p = T Ty,

which becomes the second Gauss equation after we notice the following.

alllM—amIL

e ()],
(Fe) () ),
exaan|(Eg) ]

_@N—MaﬁG_wr%?F_g)m>

LN — M2
EG-m 1 f
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Here we use ( b > ~to denote the (7, ) component of the matrix < ¢ Z)
ij

c d
(i4)
Similar calculations confirm the rest of the equations. O

Remark 2. As Ffj can be calculated using E, IF, G, the Codazzi-Mainradi and Gauss
equations can be seen as equations for I, M, N given E, IF, .

Remark 3. It can be shown that as long as E, IF, 5, I, M, N satisfy the Codazzi-Mainradi
and Gauss equations, with Ffj calculated from IE, F, G as we have seen before, and with

K = %, then there is a unique surface patch o with E du? + 2 IF du dv + G dv?,
L du? + 2 M du dv + N dv? as its first and second fundamental forms, Ffj as its Christoffel

symbols, and K as its Gaussian curvature.!

Example 4. 2Is there a surface with the first and second fundamental forms du?+ cos?u dv?
and cos?u du? + dv??

We see that E=1,F =0, G = cos’u, L=cos?u, M=0, N=1. Now we calculate I'};. As it
is too hard to remember the formulas, we start from the “first principle” (2):

Oyu = F%lau—i_r%lav—i_LNa

Ouv = F%2Uu+r%2av+MNa (14)
Oy = F%2Uu+F%2UU+NN-
We have
F}lzf}lE—l—F%llF:aw-au:%Eu:O. (15)
cos?u F%l = F%IF + F%l G=0uu-0y= (Uu : Uv)u - % (Uu : Uu)v =0 (16>
Thus I't; =%, =0. Similarly we can calculate
I'i,=0, I'?,=—tanu, 'S, =cosusinu, I'%,=0. (17)
Now we see that
M, — N, =0 (18)
while
LT3+ M (T3, —I'ly) — NIy = cos®usin u + tan u # 0. (19)

Thus the second Codazzi-Mainradi equation is not satisfied and consequently there is no
surface with the first and second fundamental forms du? + cos?u dv? and cos?u du? + dv?.

1.3. Gauss’ remarkable theorem

THEOREM 5. (GAUSS” THEOREMA EGREGIUM) The Gaussian curvature of a surface is
preserved by local isometries.

Proof. This follows immediately from the Gauss equations together with the fact that
if f: S+ S is a local isometry, then the first fundamental forms for o(u, v) and &(u,
v):= f(o(u,v)) are identical, and consequently the two surfaces have the same E,F, G, I'};. O

1. Theorem 10.1.3 of the textbook.
2. Exercise 10.1.2 of the textbook.
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Remark 6. One can calculate an explicit formula for K using E, F, G only3:

*]EUU"'IFU,U Guu 2 Eu F, - 7]EU 0 %Ev %Gu
det -1G. E F —det| g, E F
% %Gu F G lg. F @ 20)
a (EG - F2)?2

2. Surfaces of constant Gaussian curvature
2.1. Surfaces with K =0

THEOREM 7. Let S be a surface covered by one single surface patch. Assume that its Gaussian
curvature K =0 everywhere. Then S is isometric to an open subset of a plane.

Proof. We have seen in Lecture 13 (Proposition 12) that such S must be a ruled surface.

Thus we can assume the surface patch to be o(u,v) =a(u)+vi(u) with ||l =||a’||=1. Then
we have
ou=0a!(u)+vl'(u), o, =1(u). (21)
Consequently
E=1+2va’ - I'+0*||l'|? F=a'-1, G=1. (22)

(20) now gives

IV 3E, F.—3E, 0 3E, 0
0 = det 0 E 1]_:‘ —det %]Ev E F
0 F 0 F 1
1
S +(§ )
= —VIP (1 2v (@) 0 P = (@ 1)) + (o o )2

=V (1= (")) + (- 1) (23)

We discuss two cases.

i. I’=0. In this case o is an open subset of a generalized cylinder and is isometric to

an open subset of a plane.
i 1'4£0. Let I:= from (23) we have

1— (/- 1)2= (a/ - 1")2=0. (24)

IIl’H’

As o is a unit vector and so are I’ and furthermore | LI’, we sce that o' - (I x [') =
and therefore a’ - (I x I’) = 0. From §3 of Lecture 9 we see that this implies S is
developable and consequently is isometric to an open subset of a plane. O

3. Corollary 10.2.2 of the textbook.
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2.2. Surfaces with K > 0 constant

THEOREM 8. Let S be a surface covered by one single surface patch. Assume that its Gaussian
curvature K is a positive constant. Then S is isometric to an open subset of a sphere.
Proof. Clearly it suffices to consider the case K =1.

Exercise 1. Rigorously justify this.

We first re-parametrize the surface so that the fundamental forms are simple.

- (Geodesic coordinates) N

PROPOSITION 9. (PROPOSITION 9.5.1 OF THE TEXTBOOK) Let py € S.
Then there is a neighborhood of p that can be parametrized so that the first
fundamental form is du® + G(u, v) dv? where G(u,v) is a smooth function

satisfying (po=0(0,0))
G(0,v) =1, G,(0,v) =0. (25)

Proof. Let v(v) be a geodesic passing p with v the arc length parameter.
At each point on =, let 9”(u) be the geodesic passing that point and is
perpendicular to v. Further assume that u is also the arc length parameter.

Exercise 2. Explain why there is a neighborhood of p that is fully covered by these

7(u)’s.

Exercise 3. Explain why each point in this neighborhood belongs to exactly one

7 ().

Thus we obtain a surface patch o(u, v) = 7°(u). As for each v, ¥°(u) is
arc length parametrized, there holds ||o,||=1==IE=1. To show that F=0,

we notice that by construction

.(0,v) - 0,(0,v) =0. (26)
On the other hand, note that along ¥*(u), we have u’=1,v"=0. The geodesic
equations
1 E F u
/ no o_
(Eu'+F'), = 2(u U><IFG>< > (27)
1 E F u
/ N L
wuvrcon, = 3o (§ g ) (1) 28)
now become
0=0 and F, =0. (29)

Consequently IF =0 for all u,v.

Exercise 4. Explain, using the intuition “geodesics are shortest paths”, why o (ug,v)
has to be perpendicular to o(u,vo).

Finally, 0,(0,v) = 5 so G(O v) = 1. Then (27) applied to the geodesic
\fy( v) =0(0,v) gives G,(0,v) = 0
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(20) now gives
3 GG+ C=C2 (30)
Setting G = g2 we reach
Guut+ 9=0=g(u,v) =A(v) cosu+ B(v) sin u. (31)

Thanks to (25) there holds ¢(0,v) =1, g,(0,v) =0 which give A(v)=1, B(v)=0. Consequently
we have the first fundamental form to be

du? + cos®u dv? (32)
which is exactly the first fundamental form of $? in spherical coordinates. O

2.3. Surfaces with K < 0 constant

THEOREM 10. Let S be a surface covered by one single surface patch. Assume that its
Gaussian curvature K is a negative constant. Then S is isometric to an open subset of a
pseudosphere.

(The pseudospherej

Consider a surface of revolution o(u, v) = (f(u) cosv, f(u)sinv, g(u))
where f >0 and (f')?+(¢)?=1.

Exercise 5. Show that K = —fTH.

When K =—1, we have f”"— f=0—= f(u)=ae“+be~". Such a surface
is called a “pseudosphere”. For example when a=1,b=0 we have

g(u) :/\/1 —e®du=v1—e®—In(e "+ Ve " —1). (33)

Exercise 6. Draw a sketch of the pseudosphere in this case.

Proof. (OF THEOREM 10) Same idea as the proof of Theorem 8. See p.258 of the text-
book. 0

2.4. Compact surfaces

THEOREM 11. *Every connected compact surface whose Gaussian curvature is constant is a
sphere.

Exercise 7. Every compact surface has a point where K > 0. (Hint: Consider p € S that is furthest
away from the origin)

Proof. Consider the function J = (k; — k2)% Let p be where J reaches maximum-this is
possible as J is continuous. If this maximum is 0 then we have k1 = ko and S must be part of
a sphere. If not, thanks to k1xko = K is constant, there must hold that x; is at local maximum
and k9 at local minimum at p. We reach contradiction using the following lemma.

4. Theorem 10.3.4 of the textbook.
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LEMMA 12. 5Let 0: U +— IR? be a surface patch containing a point p that is not an umbilicS.
Let k1 > ko be the principal curvatures of o and suppose that k1 has a local maximum at p
and Ko has a local minimum at p. Then K(p)<0. O

Proof. (or LEMMA 12) Taking a small neighborhood of p such that x; > k9 in it. Take the
coordinate system along the principal vectors so that the two fundamental forms are

Edu?+Gdv?,  Ldu®+Ndo2 (34)

L N

Thus we have k1= T and ko= —.
G

Exercise 8. What about k1 > k7

Taking derivatives of the Codazzi-Mainradi equations we obtain

1 L N 1 L N

and consequently

B (25 )t Gum (25 ) (36)

R2 — k1 R1— R2

At p we have (k1), = (k2),= 0= E, = G, =0 which leads to

K(p) = —ﬁ (%(%) - 8%<%>)

o _Guu+Evv
] %E)G (K1)
G R2)uu — E K1 )vv
= — <0, 37
EG (/’il - /'ig) ( )
where the last inequality comes from k; taking a local maximum and ko taking a local
minimum at p . (]

Remark 13. Similar to the proof of Theorem 11 we can show that a compact surface with
K >0 everywhere and constant H is a sphere.

5. Lemma 10.3.5 of the textbook.
6. that is k1 % Ko.
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