
Lectures 14�15: Geodesics

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we study the shortest path connecting two points in a
surface.

The required textbook sections are �7.4, �9.1�9.4. The optional sections
are �9.5

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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1. Parallel transport

1.1. De�nition

� In classical geometry, one of the most important ideas is parallelism.

� For example, R2 or R3, the shortest paths are straight lines, which are characterized
by the fact that the tangent direction never changes. But what does this mean? In
classical geometry we show that the two tangent directions at di�erent points on the
path are parallel to each other.

� However on a curved surface this becomes problematic. For example consider the
following situation:

Consider the unit sphere. Let B be the north pole and A;B be two points on the
equator. Then clearly vB should be the tangent vector at B that is �parallel� to vA at
A. Similarly vC k vB, v~A k vC. However it is clear that vA k v~A.

A

B

C

vA

vB

vC v~A

Figure 1. vA k vB; vB k vC ; vC k v~A.

� Therefore it does not make much sense on a curved surface to say �two vectors at two
di�erent points are parallel to each other�.

� On the other hand, if we adopt a more �dynamical� interpretation of parallelism, it
becomes possible to adapt this notion to curved surfaces.

� Instead of comparing vectors at two di�erent points, we consider the following situ-
ation.

Let 
 be a curve on a surface S. Let w be a tangent vector �eld along

, that is w:S 7!R3 such that w(p)2TpS for every p2 
.

Remark 1. As soon as 
 is parametrized by some x(t), we can form the composite
function w(x(t)). When no confusion should arise, we abuse notation a bit and simply
write w(t).

Remark 2. It is easy to see how �a tangent vector �eld on S� should be de�ned.

Exercise 1. Give a reasonable de�nition to a �tangent vector �eld on S�.
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We would like to give de�nition to �w does not change direction along 
�.

� One reasonable de�nition is the following.

� Covariant derivative.
In the above setting, the covariant derivative of w along 
 is given by the

tangential component of w 0:

r
w=w 0¡ (w 0 �NS)NS (1)

where NS is the unit normal of the surface.

� Then we say v to be parallel along 
 if r
w=0 at every point of 
.

Remark 3. Clearly,

r
w=0()w 0?Tx(t)S: (2)

1.2. Examples

Example 4. Let S be the x-y plane. Let x(t) = (u(t); v(t); 0). Then we have w(t) :=
x0(t)= (u0(t); v 0(t); 0) and

r
w(t)=x00(t)¡ [x00(t) �NS(t)]NS(t)= (u00(t); v 00(t); 0) (3)

as NS(t)=(0;0;1) for all t. Consequently x0(t) is parallel along 
 if and only if u00(t)=v 00(t)=
0, that is u= a1 t+ a0; v= b1 t+ b0.

Thus a plane curve is �straight� when it is a straight line.

Example 5. Let S be the cylinder �(u; v) = (cos u; sin u; v). Let 
 be a curve on S. Thus

 can be parametrized as x(t)= (cosu(t); sinu(t); v(t)). We have

w(t) :=x0(t)= ((¡sinu(t)) u0(t); (cosu(t)) u0(t); v 0(t)) (4)

and

x00(t)= ((¡cosu) u02¡ (sinu)u00; (¡sinu)u02+(cosu) u00; v 00): (5)

On the other hand, we have

�u=(¡sinu; cosu; 0); �v=(0; 0; 1); (6)

therefore

NS=
�u��v
k�u� �vk

=(cosu; sinu; 0): (7)

Thus we can calculate

r
w(t)= (¡(sinu)u00; (cosu)u00; v 00): (8)

Therefore r
w(t)= 0()

¡(sinu) u00=0; (cosu)u00=0; v 00=0: (9)

This is equivalent to u00=0; v 00=0.
Thus a cylindrical curve is �straight� when it is of the form (cosu(t); sinu(t); v(t)) where

(u(t); v(t)) is a straight line in the plane.
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Example 6. Let S be the unit sphere given by �(u; v)= (cos u cos v; cos u sin v; sin u). We
consider the curve 
 to be a circle parametrized as x(t)= (cosu0 cos t; cosu0 sin t; sinu0). Let
w(t)=x0(t) be the tangent vector. We have

w 0(t)= (¡cosu0 cos t;¡cosu0 sin t; 0): (10)

On the other hand we have

NS(u; v)= (cosu cos v; cosu sin v; sinu): (11)

Therefore

r
w(t)=
sin 2u0
2

(¡sinu0 cos t;¡sinu0 sin t; cosu0): (12)

We see that it is zero only if u0=0, that is 
 is part of a big circle.

Exercise 2. What about u0=�/2?

Example 7. Of course we should not restrict ourselves to the tangent of the curve. We
take the setting of Example 6 and let w(t) := (¡sin u0 cos t;¡sin u0 sin t; cos u0) be the unit
tangent vector at x(t) �pointing north�.

We have

w 0(t)= (sinu0 sin t;¡sinu0 cos t; 0): (13)

Again

NS(u; v)= (cosu cos v; cosu sin v; sinu): (14)

Therefore

r
w(t)= sinu0 (sin t;¡cos t; 0): (15)

Again w(t) is parallel along 
 if and only if u0=0, that is 
 is part of a big circle.

Exercise 3. Study r
w(t) for w(t)=x0(t) for an arbitrary spherical curve.

1.3. Properties

Lemma 8. Let 
 be a curve on S. Let w be a tangent vector �eld along 
. Then the condition
r
w=0 is independent of the parametrization of 
.

Proof. Let x(t); x~(t~) be two di�erent parametrizations of 
. Then there is a function T~(t)
such that x~(t~)= x(T~(t)). Since w is a vector �eld along 
, we have

w~(t~)=w(T~(t)): (16)

Consequently

r
w~ =w 0T~
0¡
¡
w 0T~

0 �NS

�
NS=T~

0r
w: (17)

Therefore r
w=0()r
w~ = 0. �

Exercise 4. Is r
w independent of the parametrization of 
?
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Remark 9. Lemma 8 justi�es the notation r
 where parametrization is not involved.
The situation can be further simpli�ed by the following lemma, which says that covariant
derivative is simply �directional derivative� on surfaces.

Lemma 10. Let 
; 
~ be two curves on S that are tangent at p2S. Let w be a tangent vector
�eld of S, that is w: S 7! R3 with w(p) 2 TpS. Let 
; 
~ be parametrized by x(t); x~(t~) with
p=x(t0)= x~(t~0) and furthermore x0(t0)=x~0(t~0). Then r
w=r
~w at p.

Proof. We have
dw
dt
(t0)=Dpw(x0(t0))=Dpw(x~0(t~0))=

dw

dt~
(t~0): (18)

Consequently

r
w=
dw
dt
(t0)¡

�
dw
dt
(t0) �NS

�
NS=

dw

dt~
(t~0)¡

�
dw

dt~
(t~0) �NS

�
NS=r
~w; (19)

exactly what we need to prove. �

Lemma 11. Let 
 be a curve on S parametrized as x(t). Then the following are equivalent.

i. Along 
 there holds �(t)= j�nj;

ii. Along 
 there holds �g=0;

iii. T (t), the unit tangent vector to 
, is parallel along 
.

Remark 12. Thus the three seemingly di�erent ways to characterize �as straight as possible�
curves on a curved surface,

1. �(t)= j�n(x(t))j,

2. �g(t)=0;

3. r
T (t)= 0,

are all equivalent.

Proof. Thanks to Lemma 8, we can take x(s) to be the arc length parametrization of 
.
Then recall that by de�nition of �n; �g we have

x00(s)=�nNS+�g (T �NS): (20)

Consequently

r
T =x00(s)¡�nNS ; (21)

and the conclusion follows. �

Exercise 5. There is a minor gap in the above argument. Can you �x it?

1.4. Calculation of the covariant derivative and Christo�el symbols

� How to calculate covariant derivative on an abstract surface, with only the two fun-
damental forms given?
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� Set up. Let S be a surface parametrized by the patch �(u;v). Let 
:x(t)=�(u(t); v(t))
and w=w(u; v) be a tangent vector �eld along 
. Therefore there are �(t); �(t) such
that w=��u+ � �v.

� Now we calculate

w 0 = �0 �u+ � 0 �v+� [�uuu0+ �uv v 0] + � [�vuu0+ �vv v 0]

= �0 �u+ � 0 �v+(�u0) �uu+(� v 0+ �u0) �uv+(� v 0) �vv: (22)

Therefore

r
w = w 0¡ (w 0 �NS)NS

= �0 �u+ � 0�v

+(�u0) (�uu¡ (�uu �NS)NS)

+(�v 0+ � u0) (�uv¡ (�uv �NS)NS)

+(� v 0) (�vv¡ (�vv �NS)NS): (23)

� To understand this formula we introduce Christo�el symbols ¡ijk and the related Gauss
equations.

Proposition 13. (Gauss Equations) Let �(u; v) be a surface patch with �rst and
second fundamental forms

Edu2+2Fdudv+Gdv2 and Ldu2+2Mdu dv+Ndv2: (24)

Then

�uu = ¡11
1 �u+¡11

2 �v+LN; (25)
�uv = ¡12

1 �u+¡12
2 �v+MN; (26)

�vv = ¡22
1 �u+¡22

2 �v+NN; (27)

where

¡11
1 =

GEu¡ 2FFu+FEv

2 (EG¡F2)
; ¡11

2 =
2EFu¡EEv+FEu

2 (EG¡F2)
;

¡12
1 =

GEv¡FGu

2 (EG¡F2)
; ¡12

2 =
EGu¡FEv

2 (EG¡F2)
;

¡22
1 =

2GFv¡GGu¡FGv

2 (EG¡F2)
; ¡22

2 =
EGv¡ 2FFv+FGu

2 (EG¡F2)
:

(28)

The six ¡ coe�cients in these formulas are called Christo�el symbols.

Remark 14. The formulas (28) look very complicated. However we will see in the
proof below that it is not hard to derive them �on the �y�.

Proof. First note that as f�u; �v;N g form a basis of R3 at p, there must exist nine
numbers such that (25�27) hold. Take inner product of (25�27) with N we see that
the coe�cients for N must be L;M;N.
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Now consider (25). Taking inner product with �u and �v we have

E¡11
1 +F¡11

2 = �uu ��u=
�
E
2

�
u

; (29)

F¡11
1 +G¡11

2 = �uv ��v=
�
G
2

�
u

: (30)

The �rst line of formulas in (28) immediately follows. The proofs for the other four
formulas are similar and left as exercise. �

� With the help of Christo�el symbols, we can characterize conditions for a tangent
vector �eld w(t) :=�(t)�u+ �(t)�v to be parallel along a curve x(t)= �(u(t); v(t)).

Theorem 15. 1w(t) is parallel along x(t) if and only if the following equations are
satis�ed:

�0+(¡11
1 u0+¡12

1 v 0)�+(¡12
1 u0+¡22

1 v 0) � = 0;

� 0+(¡11
2 u0+¡12

2 v 0)�+(¡12
2 u0+¡22

2 v 0) � = 0:
(31)

Proof. This follows easily from (25�27). �

Remark 16. Note that the above equations are easier to remember in matrix form:

�0+

" 
¡11
1 ¡12

1

¡12
1 ¡22

1

!�
u0

v 0

�#
�
�
�
�

�
=0; (32)

and

� 0+

" 
¡11
2 ¡12

2

¡12
2 ¡22

2

!�
u0

v 0

�#
�
�
�
�

�
=0: (33)

Remark 17. Also keep in mind that when we �upgrade� to Riemannian geometry,
a �surface� will not be given as a �surface patch� with explicit formulas, but as a
collection of quantities de�ned at every p2S: E;F;G;L;M;N and ¡ijk .

Observe that in (31) only the �rst fundamental form and the tangent direction
x0(t) are involved.

� Examples and remarks.

Example 18. Let S be the x-y plane, parametrized by �(u; v)= (u; v; 0). Then we
easily have ¡ijk =0 for all i; j ; k. (31) now becomes

� 0= � 0=0: (34)

Just as we expected.

Remark 19. The Christo�el symbol ¡ijk is roughly the k-th component of the change
of the i-th coordinate vector along the j-th direction.

1. Proposition 7.4.5 of the textbook.
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Note that if ¡ijk = 0 for all i; j ; k, then the coordinate vectors �u; �v are parallel
along u= const and v= const.

Example 20. Let S be the cylinder (cosu; sinu; v). Then we have

�u=(¡sinu; cosu; 0); �v=(0; 0; 1) (35)

and

E=1; F=0; G=1: (36)

Thus ¡ijk =0 for all i; j ; k. (31) again gives

� 0= � 0=0: (37)

Example 21. Let S be the unit sphere (cosu cos v; cosu sin v; sinu). We have

E=1; F=0; G= cos2u: (38)

This leads to

¡11
1 =

GEu¡ 2FFu+FEv

2 (EG¡F2)
=0; ¡11

2 =
2EFu¡EEv+FEu

2 (EG¡F2)
=0;

¡12
1 =

GEv¡FGu

2 (EG¡F2)
= 0; ¡12

2 =
EGu¡FEv

2 (EG¡F2)
=¡tanu;

¡22
1 =

2GFv¡GGu¡FGv

2 (EG¡F2)
= sinu cosu; ¡22

2 =
EGv¡ 2FFv+FGu

2 (EG¡F2)
= 0:

(39)

(31) now becomes

�0+(sinu cosu) v 0 �=0; � 0¡ (tanu) v 0�=0: (40)

Thus w is parallel along 
 if and only if (40) holds.

1.5. Parallel transport map

Definition 22. Let p; q 2S and let 
 be a curve on S parametrized by x(t) connecting p; q
with p=x(t0); q=x(t1). Let w02TpS. Then there is a unique vector �eld w(t) parallel along

 with w(t0)=w0. The map �


pq:TpS 7!TqS taking w0 to w(t1) is called parallel transport from
p to q along 
.

Proposition 23. �

pq is an isometry.

Proof. We have

(w �w~)0=w 0 �w~ +w �w~ 0=0: (41)

as w 0; w~ 0 kN . Therefore for w0; w~02TpS,

�

pq(w0) ��


pq(w~0)¡w0 �w~0=
Z
t0

t1

(w �w~)0dt=0; (42)

and the conclusion follows. �
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Example 24. Let S be the unit sphere (cos u cos v; cos u sin v; sin u). We have seen that a
vector �eld �(t)�u+ �(t)�v is parallel along 
 is equivalent to

�0+(sinu cosu) v 0 �=0; � 0¡ (tanu) v 0�=0: (43)

Now notice that unless sin u = 0, that is 
 is the big circle, the solution does not satisfy
�0= � 0=0.

2. Geodesics

2.1. De�nition and basic properties

We have seen that there are three equivalent ways to characterize a curve 
 on a surface S
being �as straight as possible� curves on a curved surface,

1. Curvature of the curve at p2 
 equals j�n(p)j where �n(p) is the normal curvature of
S at p in the tangent direction of 
.

2. The geodesic curvature of the curve is zero, that is �g(t)=0;

3. The covariant derivative of the unit tangent vector of the curve is zero along the curve,
that is r
T =0.

Now we give a name to these �as straight as possible� curves.

Definition 25. (Geodesics)

� A curve 
 on the surface S is called a geodesic if r
T =0 where T is the unit tangent
vector of 
.

� A parametrized curve x(t) on the surface S is called a geodesic if r
x0(t)=0.

Proposition 26. (Some basic properties)

i. 2Let x(t) be a geodesic. Then kx0(t)k is constant.

ii. 3Any (part of a) straight line on a surface is a geodesic.

iii. 4Any normal section of a surface is a geodesic.

Proof. Left as exercises. �

2.2. Geodesic equations

� 5A curve x(t)= �(u(t); v(t)) is a geodesic ()
d
dt
(Eu0+Fv 0) =

1
2
(Eu (u0)2+2Fuu0 v 0+Gu (v 0)2); (44)

d
dt
(Fu0+Gv 0) =

1
2
(Ev (u0)2+2Fvu0 v 0+Gv (v 0)2): (45)

2. Proposition 9.1.2 of the textbook.

3. Proposition 9.1.4 of the textbook.

4. Proposition 9.1.6 of the textbook.

5. Theorem 9.2.1 of the textbook.
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(44�45) are called geodesic equations.

Proof. (44�45) is equivalent to �= j�nj everywhere along the curve. See Homework
5 for details. �

Remark 27. 6Any local isometry between two surfaces takes the geodesics of one
surface to the geodesics of the other.

Remark 28. It is useful to notice that

Eu0+F v 0=x0(t) ��u; Fu0+G v 0= x0(t) ��v (46)

and the right hand side takes simpler form in matrix form:

1
2
( u0 v 0 )

�
E F
F G

�
u

�
u0

v 0

�
;

1
2
( u0 v 0 )

�
E F
F G

�
v

�
u0

v 0

�
: (47)

� 7Equations (44�45) can be re-written as

u00+¡11
1 (u0)2+2¡12

1 u0 v 0+¡22
1 (v 0)2 = 0; (48)

v 00+¡11
2 (u0)2+2¡12

2 u0 v 0+¡22
2 (v 0)2 = 0: (49)

Proof. This follows immediately from Theorem 15 once we set w(t) = x0(t) =
u0(t)�u+ v 0(t) �v. �

Remark 29. (48) and (49) take simple matrix forms:

u00+( u0 v 0 )

 
¡11
1 ¡12

1

¡12
1 ¡22

1

!�
u0

v 0

�
=0; (50)

and

v 00+( u0 v 0 )

 
¡11
2 ¡12

2

¡12
2 ¡22

2

!�
u0

v 0

�
=0: (51)

The pattern would be crystal clear if we replace u by u1 and v by u2.

� Examples.

Example 30. 8We consider a surface of revolution

�(u; v)= (f(u) cos v; f(u) sin v; u): (52)

We have

�u=(f 0(u) cos v; f 0(u) sin v; 1); �v=(¡f(u) sin v; f(u) cos v; 0) (53)

6. Corollary 9.2.7 of the textbook.

7. Proposition 9.2.3 of the textbook.

8. Proposition 9.3.1, 9.3.2 of the textbook.
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which leads to

E=1+ f 0(u)2; F=0; G= f(u)2: (54)

Thus (44�45) becomes

((1+ f 0(u)2)u0)0 = f 0(u) f 00(u) (u0)2+ f(u) f 0(u) (v 0)2; (55)
(f(u)2 v 0)0 = 0: (56)

We see that f(u)2 v 0=C is a constant. The �rst equation simpli�es to

(1+ f 0(u)2)u00= f(u) f 0(u) (v 0)2: (57)

We see that

� v= constant are geodesics;

� u=u0 where f 0(u0)= 0 are geodesics.

� We see that

cos\(�u; x0)=
1+ f 0(u)2

p
u0

(1+ f 0(u)2) (u0)2+ f(u)2 (v 0)2
p (58)

which gives

sin2\(�u; x0)=
f(u)2 (v 0)2

(1+ f 0(u)2) (u0)2+ f(u)2 (v 0)2
: (59)

Now notice that, as x(t) is geodesic, (1+ f 0(u)2) (u0)2+ f(u)2 (v 0)2=kx0(t)k2=
constant. Consequently we have

f(u)2 sin2\(�u; x0)= constant (60)

which is (almost) Clairaut's theorem.

Exercise 6. Prove this directly from (55),(56).

Example 31. Let S be the unit sphere. This of course is a surface of revolution. We
re-write it as

(f(u) cos v; f(u) sin v; u) (61)

where f(u) = cos(arcsin u) = 1¡u2
p

. By Example 30 we see that for any geodesic
x(s)=(f(u(s)) cosv(s); f(u(s)) sinv(s);u(s)), parametrized by arc length, there holds

(1¡u2) v 0= f(u)2 v 0= constant=: c0: (62)

On the other hand, as kx0(s)k=1 we have

1= f 0(u)2 (u0)2+ f(u)2 (v 0)2+(u0)2=
(u0)2

1¡u2 +(1¡u2) (v 0)2: (63)

Therefore

1¡ c02=u2+(u0)2: (64)
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Now we have (we simply write u for u(s))

x(s)=
¡

1¡u2
p

cos v; 1¡u2
p

sin v; u
�

(65)

and

x0(s)=

�
¡uu0

1¡u2
p cos v¡ 1¡u2

p
sin v v 0;

¡u u0

1¡u2
p sin v+ 1¡u2

p
cos v v 0; u0

�
: (66)

Consequently

x(s)�x0(s)=
�
u0 sin v¡ c0u cos v

1¡u2
p ;¡u

0 cos v+ c0u sin v
1¡u2

p ; c0

�
(67)

Now calculate (using (62) and (64) whenever applicable)�
u0 sin v¡ c0u cos v

1¡u2
p

�0
=

u00 sin v+ u0 cos v v 0¡ c0u0 cos v+ c0u sin v v 0

1¡u2
p

+
uu0 (u0 sin v¡ c0u cos v)

1¡u2
p 3

=
u00 (1¡u2) sin v+(c0

2+(u0)2)u sin v
1¡ u2

p 3

=
u00 (1¡u2) sin v+(1¡u2)u sin v

1¡u2
p 3 : (68)

Finally notice that di�erentiating (64) gives

(u00+ u)u0=0: (69)

Thus if u0=/ 0, there holds u00=¡u and consequently
�
u0 sinv¡ c0u cosv

1¡u2
p

�0
=0. Similarly�

¡u0 cosv+ c0 u sinv

1¡u2
p

�0
=0 and x(s)�x0(s) is a constant vector. This implies x(s) lies in

a plane passing the origin and must be part of a big circle.

Exercise 7. Rigorously prove this last claim: Let x(s) be a curve on the unit sphere param-
etrized by arc length. Assume that x(s)� x0(s) is a constant vector. Then x(s) lies in a plane
passing the origin.

Exercise 8. What if u0=0?

2.3. Geodesics as shortest paths

� On the �at plane, the shortest path connecting any two points is the one that is part
of a geodesic, which is a straight line.

� Set up. Let p1; p22 S and let 
0 be the shortest path connecting p1; p2. Parametrize

0 by arc length �(u0(s); v0(s)). Set x(s1) = p1; x(s2) = p2. Now let (u1(s); v1(s)) be
an arbitrary vector �eld along (u0(s); v0(s)) in R2 and �(s): R 7! R be such that
�(s1) = �(s2) = 0. Let � 2 R and denote by 
� the curve �(u0 + � � u1; v0 + �� v1).
Finally denote

L(�)=

Z
s1

s2




 dds�(u0(s)+ � �(s) u1(s); v0(s)+ � �(s) v1(s))





 ds: (70)
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� Calculus of variations. We have

L(� ) =

Z
s1

s2

k(u0+ � � u1)
0�u+(v0+ � � v1)

0�vkds

=

Z
s1

s2

[((u0 + � � u1)0 �u + (v0 + � � v1)0 �v) � ((u0 + � � u1)0 �u + (v0 +

� � v1)0�v)]
1/2 ds: (71)

Here it is crucial to realize that �u; �v are evaluated at (u0 + � � u1; v0 + � � v1). In
particular, they are dependent on � .

Now we calculate

L0(0) =

Z
s1

s2

(E0 u0
0 2 + 2 F0 u0

0 v0
0 + G0 v0

02)¡1/2 [(u0
0 �u + v0

0 �v) � ((� u1)0 �u +

(� v1)0 �v+u0
0 (�u1�uu+� v1�uv)+ v0

0 (�u1�vu+� v1�vv))] ds

=

Z
s1

s2

(�u1)0 [(u0
0 �u+ v0

0 �v) ��u] + (� v1)0 [(u0
0 �u+ v0

0 �v) ��v] ds

+

Z
s1

s2

(�u1) [(u0
0 �uu+ v0

0 �uv) � (u00 �u+ v0
0 �v)] ds

+

Z
s1

s2

(� v1) [(u0
0 �uv+ v0

0 �vv) � (u00 �u+ v0
0 �v)] ds: (72)

Note that in the above we have used the fact that E0 u0
0 2 + 2 F0 u0

0 v0
0 + G0 v0

02 =
kx0(s)k2=1. Also note that in (72) �u; :::; �vv are all evaluated at (u0; v0) now.

Next we integrate the �rst integral in (72) by parts and collect all the u1 terms
together, and all the v1 terms together.

L0(0) = ¡
Z
s1

s2

(�u1) [((u0
0 �u+ v0

0 �v) ��u)0¡ (u00 �uu+ v0
0 �uv) � (u00 �u+ v0

0 �v)] ds

¡
Z
s1

s2

(� v1) [((u0
0 �u+ v0

0 �v) ��v) 0¡ (u00 �uv+ v0
0 �vv) � (u00 �u+ v0

0 �v)] ds:

Due to the arbitrariness of u1; v1, we conclude

((u0
0 �u+ v0

0 �v) ��u)0 = (u0
0 �uu+ v0

0 �uv) � (u00 �u+ v0
0 �v); (73)

((u0
0 �u+ v0

0 �v) ��v)0 = (u0
0 �uv+ v0

0 �vv) � (u00 �u+ v0
0 �v): (74)

Simple calculation now gives

(Eu0
0 +Fv0

0)0 =
1
2
(Eu (u0

0)2+2Fuu0
0 v0
0 +Gu (v0

0)2); (75)

(Fu0
0 +Gv0

0) =
1
2
(Ev (u0

0 )2+2Fvu0
0 v0
0 +Gv (v0

0)2): (76)

Exercise 9. Derive (75�76) from (73�74).

Remark 32. Note that a shortest path must be a geodesic but a geodesic does not neces-
sarily give shortest path.
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