Math 348 Fall 2016

LECTURES 12—13: CURVATURES FOR SURFACES

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we introduce several quantities that characterize the
curving of a surface patch.
The required textbook sections are §8.1-8.2. The optional sections are

§8.3-8.6.
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Differential Geometry of Curves & Surfaces

1. Gaussian and mean curvatures

One can show that the first and second fundamental forms completely determines the
surface.

However these are complicated quantities. It turns out that there are more compact
ways to understand the curving of surfaces.

Mean curvature. Consider the normal curvatures k, at one point. Pick an arbitrary
direction wy € T),S and let 6 be the counterclockwise angle from wy to the tangent
direction w along which &, is calculated. Then we have k,, = k,(0). We will define
the mean curvature as the average of all the k,,’s:

=L / T (0) 0. (1)

27

Remark 1. It is important to realize that H is independent of the choice of wy. That
is, if we take another wy € T,,S and let ¢, be the angle from w; to w, we have

1 21

1 271'
o | monan = A on(0) A0 = H. @)

Exercise 1. Prove this.

Gaussian curvature. Consider the Gauss map G: S+ $? and the corresponding Wein-
garten map V. Recall that

W(Uu) = _Nu:all Oyt 120y, W(UU) = _NU:CL21 Oy + Q22 Ov, (3)

where a1y, ..., ase can be calculated through

a1 ao1 . E F -t L M <4>
a12 A22 o F G M N '
Now let U be a region in the u-v plane. Then N: U +— $? is a surface patch for $2.
We calculate

Nu X Nv:(&llagg—am&lg) Oy X Oy. (5)
Therefore
[Ny X Ny || = [a11 aze — a1 araf|||ow x oy |- (6)
Consequently
Areaof N(U) = / (11 @9s — s agal [ x 0| dur v (7)
U

and if we take U, to be a small disc D,((ug, v0)) centering at (ug, vo) with radius r,
we would have
Areaof N(U)

rinomfa([]): |a11 G22 — G21 a12|- (8>
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Exercise 2. Prove this.
We will call the number
K := a1 a2 — az a2 (9)

the Gaussian curvature of S at py.

2. Principal curvatures

We try to understand the mean curvature H. To do this we need a formula for x,(0).

Recall that if we take |[|w(6)| =1,

pon(8) = SO 0OD) _ 4 0) (o). (10)

Now let ey, e2 be an orthonormal basis for the tangent plane 7,5, we can set w(f) =
cos B e; +sin B e5. Substituting into (10) we have

kn(0) = ({e1, €1))cos?0 + 2 ({e1, e3)) cos @ sin O + ({eq, 3)) sinf. (11)
Integrating we get
H=g [ kl0) 40 =5 {feren) + (fenea) | (12)

Taking derivative
Fn(0) = (({e2, €2)) —((e1,€1))) cos 20+ 2 ({e1, e9)) sin 2 6. (13)

We see that «,,(0) =0 has four solutions in [0,27]: 6y,00+7/2,00+m,00+37/2. As
clearly K, (0 +m)=r,(0), and k,(#) must achieve both maximum and minimum, there
are 61,05 such that 6y =0,+ 7 /2 and k1= k(1) =max (), ke=k(62) =mink(#). Now
we can take €, :=w(f#;) and é;:=w(f2) and re-do the calculation above using é;, é;
as the orthonomal basis and conclude that

K1+ K2

H= 5

(14)

We call ki, ko the principal curvatures, and the corresponding directions t; := w(6,),
to:=w(0,) the principal vectors corresponding to k1 and k.

3. How to calculate H, K, k1, K2, t1, ta.

The calculation of Gaussian curvature is easy. Recall that

(e )-(E8) (%Y) -

We easily obtain

L M
K:det< a11 Qo ):det<M 1N>:1L1N—IM2 (16)
a1z a2 det(% g) EG-TF?
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For the principal and mean curvatures, we try to calculate k1, ko in a different way.
Let w:=ao,+bo,. We try to find the maximum and minimum of

k(w)=La?*+2Mab+ Nb? (17)

under the constraint ||w| =1, that is Ea®*+2Fab+ Gb*=1. To do this we apply
the method of Lagrange multiplier:

L(a,b):=[La*+2Mab+ NV} |- A[Ea’+2Fab+ GbY. (18)
Thus
oL
e = 2[La+Mb—AEa+TFb), (19)
% — 2Ma+Nb—A(Fa+Gh). (20)
Setting them to zero we see that \ and < . > solves
L M E F a
(X)) (5 e))(5)- o
This means A solves
L-AE M-)\F
dﬁ(WLAE‘N—AG>_O (22)
which simplifies to the quadratic equation
(EG-F)N - (EN+LG-2MTF) A+ (LN —M?) =0. (23)

What is A7

If we set A=k, we see that L(a,b) <0 and L(ay,b1) =0 for some ||a; o, +b;1 0] =1.
Thus (a1, b1) maximizes L(a,b) on the curve ||a; 0, + b1 0, || = 1.1 Now notice that for
every ¢ >0 there holds L(ca,cb)=c? L(a,b). Consequently (ay,b;) maximizes L(a,b)

over the whole IR%. Thus there must hold g—i(al, b)) = a—L(al, b1) =0 and in particular,

K1 solves (23). '

Similarly we can show that ks solves (23) too. But (23) has at most two real
solutions. So k1, ke are exactly the solutions of (23).

The principal vectors are now given by

tlzCLlO'u‘l'blO'v, t2:a20u+b20-v (24)

where a;, b; solves

(E)=(ED)(2)n e

Summarizing, we see that

y_EN+LG-2MF
T 2(EG-I?)

(26)

1. Try to prove (or convince yourself) that this curve is an ellipsis.
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e An interesting consequence of the above calculation is that K = k1 ko.
e Alternative characterization of ki, Ko.

Ifweset(%:):(]]? g)(gz),wehave

(F&) (X)L )](5

Therefore k; 2 are eigenvalues of the matrix ( le az1 ) = (

~

)-o

~

Sl

12 Q22
the geometrical meanings of a;; are given through

(27)

g )_1 ( 11]%/1 ]%I\\I/[ ) Recall that

—Ny=a110,+ a120y, — Ny=a210,+axo0,. (28)
Thus we have
EF\'/L M EF\'/L M
i=n(pa) (vx)l wef(fe) (wx)) @
: (ol o, mesn e, Gousion curnd \
e Principal curvatures.
L- K E M- K F o
det(M—/ﬂF ]N—/%(G)_O7 (30)
L M E F a; '\ _
(e x)(Fe)](5)-o @)
ti:aiau+bz~av. (32)
e Mean curvature.
1 [ EN+LG-2MF EF\'/L M
~2: /. Kn(0) d0 = Y EG—TF) —Tr[( F G) (IM N )] (33)
e Gaussian curvature.
. Areaof N(B,) LN-M? EF\'/ L M
K=l S aofoB) Be-7 | F @ M) B
e Relations.
N H?2
H:HI‘;KQ, Kzlil:‘ig, liLQZH:I: ZI 4K (35)
L Kn((cos )ty + (sin 0) ta) = k1 cos®d + kg sin?f. (36))

Remark 2. We have seen last time that if x; = k9 everywhere, then S is part of plane or

sphere.
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4. Examples

Example 3. Let o(u, v) = (u, v, f(u, v)) be the graph of some smooth function f(z, y):
U+—R. Then

K— fra fou — fay H— (L+ f)) fow—2 fo fy oy + (1 + [7) fyy.

= 22J0 Joy 37
(1+ f24 f2)2 2(1+ f2+ f2)3/2 (37)
Proof. We calculate
(_fwu_f?hl)
ou=(1,0, f2), o,= (0,1, f,), N=-—>2 "7 38
Oyu = (07 Oa fxm)a Oyv = (07 07 fxy)> Oyy = (07 07 fyy)' (39)
Therefore
f:c:c fxy fyy
Le—ne M=—— N=—"22 41
VIH T VI NN (41)
Consequently
CLN-DM?_ ferfou— fay
K—EG—IF2_(1+f§+f§)2 (42)
and
H— EN+LG-2MF _ (1+ fz?) Jez =2 fo fy foy+ (1 + fx2) fuy (43)
2(EG-F?) 2(1+ f2+ f2)3/? ’
as desired. O

Example 4. Consider the surface z =« 22+ 3y* where o, 3 € R. Calculate H, K, k1, ko, 1,
t5 at the origin.

Solution. We take the surface patch o(u,v) = (u,v,au®+ Sv?). Then we have

(—2au,—2pv,1)

o.=(1,0,2au), 0,=(0,1,2 Bv), N:\/1+4a2u2+4ﬁ2v2’ (44)
ouu=1(0,0,2a),  04u=(0,0,0),  0,,=1(0,0,270). (45)

Thus at the origin which corresponds to u=v =0, we have
E=1, F=0, G=1, (46)
L=2a, M=0, N=2g. (47)

Consequently we have (wlog assume a > [3),

K1=2a, t1=(1,0,0); ko =2[3, to=(0,1,0), (48)
H=a+4, K=4ap. (49)
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Example 5. 2Let S be an oriented surface and let A € R. The parallel surface S* of S is

S ={p+AN,|pe S} (50)
where NN, is the unit normal of S at the point p. Then?
KA:1—2)\1[LI(+)\2K’ HA:l—f)\;l)\JrK)ﬁK' (51
Here we assume |A| to be small enough such that 1 —2 HA+ A > K > 0.
Proof. We take the surface patch o*u,v)=0(u,v) + A N(u,v). Then
oo =0y + ANy, oa=0,+AN,. (52)

Now recall that — N, =aq; 0, + a120,,, — N, = a9 0, + G220, We obtain
0'2\ X 0'1),\: [(1 — )\all) (1 — )\azg) — )\20,12(121] (O'u X O'U) = [1 —2HX+ )\2 K] (O'u X O'U). (53)

Thus when ) is small, there holds N*= .
Consequently we have, using N, = N, and N, = N},

(1—>\a11)(—N3)—)\CL12(—N5\) = CL1103+CL1203)> (54)
—)\azl(—NQ)+(1—)\a11)(—N3) = a210'5\+a220'1),‘. (55)

From these we have

A A AL A A A A AL A A
— N, =at10,+ a0, — N} =a3 0, + a0y, (56)

atr ais (10 o @ o2 an an (57)
a%l aég 01 a1 A22 azn az )

Now let k1, ko be eigenvalues of ( arn a1z > with eigenvectors < o ), < @2 >, we have
a1 az2 B1 B2

ayy af _ [(1 0>_)\(a11 alZ)}_1<all 012>(Oéi>
ad; ads 01 a1 22 (21 Q22 Bi
10 ail a2 _1( o >
. A
K[(Ol) <a21 022)} B;

= ﬁi(l —)\Hi)_1< g:

where

(58)

Consequently the eigenvalues for ( Zgi Zgz > are given by k= % Thus finally we have

D
H=3

1|: K1 K2 :| H-)\K

T-Awi  1-Arp] 1-2HA+EN (59)

2. Definition 8.5.1 of the textbook
3. Proposition 8.5.2 of the textbook.
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and
K1 K2 K

(I—Xk)(I—Xra) 1-2 NH+NK’
as desired. O

K=

(60)

Exercise 3. Solve the problem when 1 —2 HA+ A2 K <O0.

5. Minimal surfaces (optional)

5.1. The problem

e The so-called “Plateau’s problem” asks the following questions: Given a closed curve
in the space IR3, among the infinitely many surfaces having this curve as its boundary,
which one has the minimal area?

Example 6. Let C' be a simple closed plane curve. Then the minimal surface with C' as its
boundary is the part of the plane enclosed by C.

Proof. Let U be the region of the plane that is enclosed by C. Let o: U — R3, o (u,v) = (u,
v, f(u,v)) be an arbitrary surface patch. All we need to show is that the area of o(u,v) is
no less than the area of U.

Exercise 4. Point out as many gaps as you can in the above set up. Can you fill them?

Now we calculate

Uu:(170afx)a O-v:(oﬁlafy) (61)
and

UUXUU:(_fxa_fyul)' (62>
Therefore we have

Areaofo = /HauxadeudU
U

= /\/14— 2+ fRdudv
U
= /du dv = Areaof U. (63)
U
Thus ends the proof. O

Exercise 5. What if C is a curve on the cylinder? the sphere?

5.2. Variational analysis
e  When the curve is not a plane curve the situation becomes much more complicated.

e  We rely one variational analysis to obtain some characterizing equation for this min-
imal surface.

e Variational analysis is an upgrade of “taking derivative and set it to zero” in first year
calculus.
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e Let 0%u, v): U — R? be a surface patch for the minimal surface. Thus we have
o%(dU) = C. Now let o(u, v): U — RR3? be an arbitrary surface patch satisfying
o(0U) = {0}. Thus at least for 7 € R with |7| small, we have ¢7 := ¢ 4+ 70 to be
another surface patch with the same boundary C.

e Now define

A(7) ::/ o7 x 07| du do (64)
U

we clearly have A(0) <. A(7). Consequently we must have A’(7)=0.

e We calculate

ol =0+T10,, ol =0Y4+T10, (65)
and therefore
on X 0h=04X 00+ T[00 X 0y + 0y X 00 + 720, X 0. (66)
Let’s denote for now
Voi=0l x o), Vii=0dx 0,4+ 0, x 0, Vo i=0, X 0y, (67)
e Thus we have
A<T>:/U\/%-%+27%-V1+O<T2) du do (68)

Taking 7-derivative we obtain
vvVo- Vo vVEG — F?

e To calculate V{- V] we use the vector identity

dudv = dudv. (69)

(axb)-(ecxd)=(a-c)(b-d)—(a-d)(b-c). (70)
This leads to
Vo-Vi = (69%x09) (o) xa,)+ () x a?) - (00 x 0)
= (on-00) (00 0,) = (00-00) (00 - 00) + (00 - 0u) (00 - 09) — (00 - 07) (0w~ 0F)
= E(0)-0,)—F (0% -0,+0,-09) +G (00 0,). (71)

e To simplify (71) we notice that

(_?F _EIF):(IEG—IW)(IIE g). (72)

This inspires us to write

Uu:a1108+a1208+a13N0, Oy = Q2100+ o200+ a3 N°. (73)
Therefore

au-angau—i—lFalg, UU'USZFCLH—FGCLH, (74)

UU'ngEagl—i‘Fagg, UU'USZFa21+Ga22. (75)
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Substituting into (71) we have

Vo Vi = (a1 + azs) (E G — F?). (76)
Thus
A/(0) = / (a1 + a2) VEG — T du do (77)
U

e Finally, we notice that as o is arbitrary, we could restrict ourselves to o(u,v) = f(u,
v) N°(u,v) where f(u,v) is a scalar function vanishing on U. Thus we have

ou=fNI+ f, NO, o,= fNJ+ f,N°. (78)

Comparing with (73), we see that ay; + ase=—2 f H. Consequently
A’(O):—Z/fH\/IEG—IF2dudv:—2 fHdAS (79)
U SO
where the last is the surface integral as defined in multivariable calculus.
e Since f is arbitrary, for A’(0) =0 we must have H =0.

DEFINITION 7. (MINIMAL SURFACE) *A minimal surface is a surface whose mean curvature
is zero everywhere.

5.3. Examples
Example 8. A plane region is a minimal surface; The cylinder is not a minimal surface.
Example 9. °Any ruled minimal surface is an open subset of a plane or a helicoid.

Proof. Let o(u, v) = a(u) + v i(u) be a surface patch for the ruled minimal surface. We
calculate
on=a +vl', o,=1l, o,xo,=@" +vl')xl

Owu=0a"+vl" ou,=1l', 0,,=0 (80)
Therefore
E:(a:/—i—vl’gl-(a’%/—vl’),/ 1F:(O//—1—v/l’)-l,/ G=1-1,
- +||Iéé/)+.[q§(zy/)+><lzyl\) <4, M- Zy\.(g?;tj/; 2<X5||”’ N=0. =
Now we make simplifying assumptions.
e It is clear that we can assume ||/(u)||=1. This simplifies (81) to
E=(a'+vl')-(a'+vl'), F=ao'1, G=1,
I (@"+ol") - [(a'+vl") x| M- U'-[(a'+vl) x1] N 0. (82)

Y

(e +0vl") x 1| (' +vl) x|~

4. Definition 12.1.2 in the textbook.
5. Proposition 12.2.4 in the textbook.

10
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e We can further assume ||I'(u)|| =1.
Now H =0 implies .G — 2 M F =0 which becomes

2”4+ vl"=2(a"- )] [(a'+0vl") x1]=0. (83)
Expanding (83) into powers of v, we see that
(") D) 1024+ [(Ux D) -a”+ (o' x1) - 1"Tvo+[(a/ x1)-a” =2 (a’- 1) ((a/ x1)-1")]=0. (84)

(84) must hold for all v. Consequently

(I'x1)-1" = 0, (85)
('x ) -a"+ (' x1)-1" = 0, (86)
(@' x1)-a"—2(a'- 1) (o' x1)-I) = 0. (87)

Now by (85) we conclude that [(u) has zero torsion and is a plane curve. But by our
assumption [(u) is also a spherical curve. Consequently [(u) is a circle. In fact since [ belongs
to the same plane as this circle, I(u) must be a big circle on the unit sphere. Consequently
we have ["=—I.

Now notice that {l, I’y N =1 x I’} form an orthonormal basis. Thus we write o’ =
A+ pl'+~ N. Taking derivative and using the facts that N is a constant vector as well as
" =—1, we have

a"=N—=p)l+AN+p)l'"++"N. (88)

By (86) we have (I’ x [)-a” =0 which means 7' =0 so 7= is a constant.
Finally we take span{l, [’} to be the z-y plane. Thus we have

a(u) = (f(u), g(u), You+7) (89)

where 7y, v1 are constants, and [(u) = (cosu,sinu,0). Now there are two cases.
e ~=0. Clearly o is part of a plane (recall that [ also is in the z-y plane;

e % #0. In this case (87) simplifies to
g"cosu— f"sinu=2(f"cosu+ g'sinu). (90)

Now notice that we can always pick a(u) such that o'(u) - {(u) = 0. This gives
f'cosu+ ¢g'sinu=0 and consequently

(¢'cosu— f'sinu)' =0= g’ cosu — f'sinu=rcy (91)

Putting together

flcosu+g'sinu = 0 (92)
—f'sinu+g'cosu = ¢ (93)
we reach
f'=—cosinu, g'=cocosu (94)
which means
f=c1+cocosu, g=Cy+ cosinu. (95)

11
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So finally we have

o(u,v)=(c1+ (v+cy) cosu, ca+ (v + ¢o) sinu, you + 71) (96)

which is the same as
o(u,v) = (c1+ v cosu, ca+ vsinu, 1 + Yo u), (97)
a helicoid. m

Remark 10. Note that the helicoid is not developable.

6. Developable surfaces (optional)

Recall that we have proved that the only developable surfaces are the plane, the (generalized)
cylinder, the (generalized) cone, and a class of surfaces called “tangent developables”. In the
proof we left one big gap: the claim that any developable surface must be ruled. Now we
finally are able to fill this gap.

In the following we assume S is a developable surface, that is a surface having local
isometries with the flat plane. Recall that a local isometry f:S; — S is characterized by
the fact that for every surface patch oy for Sj, if we denote by o5 := f o g1, then the first
fundamental forms are identical: £, = Es, '] =IFy, G = Gs.

LEMMA 11. S must have Gaussian curvature zero everywhere.
Proof. Left as exercise. U

PROPOSITION 12. (PROPOSITION 8.4.2 OF THE TEXTBOOK) Let p € S be such that the
principal curvatures k1 # Ko there. Then there is a straight line segment passing p while at
the same time contained in S. In other words, S is a ruled surface.

Proof.
i. Pick o(u,v) such that the first and second fundamental forms are
Edu?+Gdv?,  Ldu?+Ndv? (98)
Exercise 6. Why can this be done?

ii. Since K =0, there must hold IL. N =0. Note that if both IL., N=0, then x; = xs=0.
Therefore we can assume IL#0 or N 0. We study the case IL#0 and leave the case
N +#0 as exercise. Note that if I+ 0 then necessarily N =0.

iii. The second fundamental form is now IL du?. We will prove that o(ug,v) is a straight

line. Since

No=—E-'Lo,, N,=0, (99)
we have T:% and T,- N,=0,T,- N=0,T,-T =0. This implies T}, =0 and we are
done. ]

Exercise 7. What happens if k1 =k =07

12
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