
Lectures 12�13: Curvatures for Surfaces

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we introduce several quantities that characterize the
curving of a surface patch.

The required textbook sections are �8.1�8.2. The optional sections are
�8.3�8.6.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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1. Gaussian and mean curvatures
� One can show that the �rst and second fundamental forms completely determines the

surface.

� However these are complicated quantities. It turns out that there are more compact
ways to understand the curving of surfaces.

� Mean curvature. Consider the normal curvatures �n at one point. Pick an arbitrary
direction w0 2 TpS and let � be the counterclockwise angle from w0 to the tangent
direction w along which �n is calculated. Then we have �n = �n(�). We will de�ne
the mean curvature as the average of all the �n's:

H: =
1
2 �

Z
0

2�

�n(�) d�: (1)

Remark 1. It is important to realize that H is independent of the choice of w0. That
is, if we take another w12TpS and let �1 be the angle from w1 to w, we have

1
2�

Z
0

2�

�n(�1) d�1=
1
2�

Z
0

2�

�n(�) d�=H: (2)

Exercise 1. Prove this.

� Gaussian curvature. Consider the Gauss map G:S 7!S2 and the corresponding Wein-
garten map W . Recall that

W(�u)=¡Nu= a11�u+ a12�v ; W(�v)=¡Nv= a21�u+ a22�v; (3)

where a11; :::; a22 can be calculated through�
a11 a21
a12 a22

�
=

�
E F
F G

�¡1� L M
M N

�
: (4)

Now let U be a region in the u-v plane. Then N : U 7! S2 is a surface patch for S2.
We calculate

Nu�Nv=(a11a22¡ a21a12) �u��v: (5)

Therefore

kNu�Nvk= ja11a22¡ a21a12jjk�u��vk: (6)

Consequently

Area ofN(U)=
Z
U

ja11a22¡ a21a12jjk�u��vkdu dv (7)

and if we take Ur to be a small disc Dp((u0; v0)) centering at (u0; v0) with radius r,
we would have

lim
r¡!0

Area ofN(U)
Area of �(U)

= ja11a22¡ a21a12j: (8)
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Exercise 2. Prove this.

We will call the number

K := a11a22¡ a21a12 (9)

the Gaussian curvature of S at p0.

2. Principal curvatures
� We try to understand the mean curvature H. To do this we need a formula for �n(�).

� Recall that if we take kw(�)k=1,

�n(�)=
hhw(�); w(�)ii
hw(�); w(�)i = hhw(�); w(�)ii: (10)

� Now let e1; e2 be an orthonormal basis for the tangent plane TpS, we can set w(�)=
cos � e1+ sin � e2. Substituting into (10) we have

�n(�)= hhe1; e1iicos2�+2 hhe1; e2ii cos � sin �+ hhe2; e2ii sin2�: (11)

Integrating we get

H =
1
2�

Z
0

2�

�n(�) d�=
1
2
[hhe1; e1ii+ hhe2; e2ii ]: (12)

� Taking derivative

�n
0 (�)= (hhe2; e2ii¡hhe1; e1ii) cos 2 �+2 hhe1; e2ii sin 2 �: (13)

We see that �n0 (�)=0 has four solutions in [0; 2 �]: �0; �0+�/2; �0+�; �0+3 �/2. As
clearly �n(�+�)=�n(�), and �n(�) must achieve both maximum and minimum, there
are �1; �2 such that �2=�1+�/2 and �1=�(�1)=max�(�), �2=�(�2)=min�(�). Now
we can take e~1 := w(�1) and e~2 := w(�2) and re-do the calculation above using e~1; e2~
as the orthonomal basis and conclude that

H =
�1+�2
2

: (14)

We call �1; �2 the principal curvatures, and the corresponding directions t1 := w(�1);
t2 :=w(�2) the principal vectors corresponding to �1 and �2.

3. How to calculate H;K; �1; �2; t1; t2.
� The calculation of Gaussian curvature is easy. Recall that�

a11 a21
a12 a22

�
=

�
E F
F G

�¡1� L M
M N

�
: (15)

We easily obtain

K = det
�
a11 a21
a12 a22

�
=

det
�

L M
M N

�
det

�
E F
F G

� = LN¡M2

EG¡F2
: (16)
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� For the principal and mean curvatures, we try to calculate �1; �2 in a di�erent way.
Let w := a �u+ b �v. We try to �nd the maximum and minimum of

�(w)=La2+2Ma b+N b2 (17)

under the constraint kwk= 1, that is E a2+ 2F a b+G b2= 1. To do this we apply
the method of Lagrange multiplier:

L(a; b) := [La2+2Ma b+N b2]¡� [Ea2+2Fa b+G b2]: (18)

Thus
@L
@a

= 2 [La+M b¡�(Ea+F b)]; (19)

@L
@b

= 2 [Ma+N b¡� (Fa+G b)]: (20)

Setting them to zero we see that � and
�
a
b

�
solves��

L M
M N

�
¡�

�
E F
F G

���
a
b

�
=0: (21)

This means � solves

det
�

L¡�E M¡�F
M¡�F N¡�G

�
=0 (22)

which simpli�es to the quadratic equation

(EG¡F2)�2¡ (EN+LG¡ 2MF)�+(LN¡M2)=0: (23)

� What is �?
If we set �=�1, we see that L(a;b)60 and L(a1; b1)=0 for some ka1 �u+b1 �vk=1.

Thus (a1; b1) maximizes L(a; b) on the curve ka1�u+ b1�vk=1.1 Now notice that for
every c>0 there holds L(c a; c b)= c2L(a; b). Consequently (a1; b1) maximizes L(a; b)
over the whole R2. Thus there must hold @L

@a
(a1; b1)=

@L

@b
(a1; b1)=0 and in particular,

�1 solves (23).
Similarly we can show that �2 solves (23) too. But (23) has at most two real

solutions. So �1; �2 are exactly the solutions of (23).
The principal vectors are now given by

t1= a1�u+ b1�v; t2= a2�u+ b2�v (24)

where ai; bi solves��
L M
M N

�
¡�i

�
E F
F G

���
ai
bi

�
=0; i=1; 2: (25)

� Summarizing, we see that

H =
EN+LG¡ 2MF

2 (EG¡F2)
: (26)

1. Try to prove (or convince yourself) that this curve is an ellipsis.

Di�erential Geometry of Curves & Surfaces

4



� An interesting consequence of the above calculation is that K =�1�2.

� Alternative characterization of �1; �2.

If we set
�
�i
�i

�
=
�

E F
F G

��
ai
bi

�
, we have

��
E F
F G

�¡1� L M
M N

�
¡�i

�
1 0
0 1

���
�i
�i

�
=0: (27)

Therefore �1;2 are eigenvalues of the matrix
�
a11 a21
a12 a22

�
=
�

E F
F G

�¡1 � L M
M N

�
. Recall that

the geometrical meanings of aij are given through

¡Nu= a11�u+ a12�v; ¡Nv= a21�u+ a22�v: (28)

Thus we have

H =Tr
��

E F
F G

�¡1� L M
M N

��
; K =det

��
E F
F G

�¡1� L M
M N

��
: (29)

� Principal curvatures.

det
�

L¡�iE M¡�iF
M¡�iF N¡�iG

�
=0; (30)

��
L M
M N

�
¡ �i

�
E F
F G

���
ai
bi

�
=0; (31)

ti= ai �u+ bi�v: (32)

� Mean curvature.

H =
1
2�

Z
0

2�

�n(�) d�=
EN+LG¡ 2MF

2 (EG¡F2)
=Tr

��
E F
F G

�¡1� L M
M N

��
: (33)

� Gaussian curvature.

K = lim
r¡!0

Area of N(Br)
Area of �(Br)

=
LN¡M2

EG¡F2
=det

��
E F
F G

�¡1� L M
M N

��
: (34)

� Relations.

H =
�1+�2
2

; K =�1�2; �1;2=
H � H2¡ 4K

p

2
: (35)

�n((cos �) t1+(sin �) t2)=�1 cos2�+�2 sin2�: (36)

Principal curvature, mean curvature, Gaussian curvature

Remark 2. We have seen last time that if �1= �2 everywhere, then S is part of plane or
sphere.
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4. Examples

Example 3. Let �(u; v) = (u; v; f(u; v)) be the graph of some smooth function f(x; y):
U 7!R. Then

K=
fxx fyy¡ fxy

2

(1+ fx
2+ fy

2)2
; H =

(1+ fy
2) fxx¡ 2 fx fy fxy+(1+ fx

2) fyy

2 (1+ fx
2+ fy

2)3/2
: (37)

Proof. We calculate

�u=(1; 0; fx); �v=(0; 1; fy); N =
(¡fx;¡fy; 1)
1+ fx

2+ fy
2

p ; (38)

�uu=(0; 0; fxx); �uv=(0; 0; fxy); �vv=(0; 0; fyy): (39)

Therefore

E=1+ fx
2; F= fx fy; G=1+ fy

2; (40)

L=
fxx

1+ fx
2+ fy

2
p ; M=

fxy

1+ fx
2+ fy

2
p ; N=

fyy

1+ fx
2+ fy

2
p : (41)

Consequently

K =
LN¡M2

EG¡F2
=

fxx fyy¡ fxy
2

(1+ fx
2+ fy

2)2
(42)

and

H =
EN+LG¡ 2MF

2 (EG¡F2)
=
(1+ fy

2) fxx¡ 2 fx fy fxy+(1+ fx
2) fyy

2 (1+ fx
2+ fy

2)3/2
; (43)

as desired. �

Example 4. Consider the surface z=� x2+ � y2 where �; � 2R. Calculate H;K;�1; �2; t1;
t2 at the origin.

Solution. We take the surface patch �(u; v)= (u; v; � u2+ � v2). Then we have

�u=(1; 0; 2�u); �v=(0; 1; 2 � v); N =
(¡2�u;¡2 � v; 1)
1+4�2u2+4 �2 v2

p ; (44)

�uu=(0; 0; 2�); �uv=(0; 0; 0); �vv=(0; 0; 2 �): (45)

Thus at the origin which corresponds to u= v=0, we have

E=1; F=0; G=1; (46)

L=2�; M=0; N=2 �: (47)

Consequently we have (wlog assume �> �),

�1=2�; t1=(1; 0; 0); �2=2 �; t2=(0; 1; 0); (48)

H =�+ �; K =4��: (49)
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Example 5. 2Let S be an oriented surface and let �2R. The parallel surface S� of S is

S�= fp+�Npj p2Sg (50)

where Np is the unit normal of S at the point p. Then3

K�=
K

1¡ 2�H +�2K
; H�=

H ¡�K
1¡ 2�H +�2K

: (51)

Here we assume j�j to be small enough such that 1¡ 2H�+�2K > 0.

Proof. We take the surface patch ��(u; v)= �(u; v)+�N(u; v). Then

�u
�= �u+�Nu; �v

�=�v+�Nv: (52)

Now recall that ¡Nu= a11�u+ a12�v;¡Nv= a21�u+ a22�v, we obtain

�u
���v�= [(1¡�a11) (1¡� a22)¡�2 a12a21] (�u��v)= [1¡ 2H�+�2K] (�u��v): (53)

Thus when � is small, there holds N�=N .
Consequently we have, using Nu=Nu

� and Nv=Nv
�,

(1¡� a11) (¡Nu
�)¡�a12 (¡Nv

�) = a11�u
�+ a12�v

�; (54)
¡�a21(¡Nu

�)+ (1¡� a11)(¡Nv
�) = a21�u

�+ a22�v
�: (55)

From these we have

¡Nu
�= a11

� �u
�+ a12

� �v
�; ¡Nv

�= a21
� �u

�+ a22
� �v

�; (56)

where  
a11
� a12

�

a21
� a22

�

!
=

��
1 0
0 1

�
¡�
�
a11 a12
a21 a22

��¡1� a11 a12
a21 a22

�
: (57)

Now let �1; �2 be eigenvalues of
�
a11 a12
a21 a22

�
with eigenvectors

�
�1
�1

�
;
�
�2
�2

�
, we have 

a11
� a12

�

a21
� a22

�

!
=

��
1 0
0 1

�
¡�

�
a11 a12
a21 a22

��¡1� a11 a12
a21 a22

��
�i
�i

�
= �i

��
1 0
0 1

�
¡�

�
a11 a12
a21 a22

��¡1� �i
�i

�
= �i (1¡��i)¡1

�
�i
�i

�
: (58)

Consequently the eigenvalues for
 
a11
� a12

�

a21
� a22

�

!
are given by �i�=

�i
1¡��i

. Thus �nally we have

H�=
1
2

�
�1

1¡��1
+

�2
1¡��2

�
=

H ¡�K
1¡ 2H�+K�2

; (59)

2. De�nition 8.5.1 of the textbook

3. Proposition 8.5.2 of the textbook.
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and

K�=
�1�2

(1¡��1) (1¡��2)
=

K
1¡ 2�H +�2K

; (60)

as desired. �

Exercise 3. Solve the problem when 1¡ 2H�+�2K< 0.

5. Minimal surfaces (optional)

5.1. The problem

� The so-called �Plateau's problem� asks the following questions: Given a closed curve
in the spaceR3, among the in�nitely many surfaces having this curve as its boundary,
which one has the minimal area?

Example 6. Let C be a simple closed plane curve. Then the minimal surface with C as its
boundary is the part of the plane enclosed by C.

Proof. Let U be the region of the plane that is enclosed by C. Let �:U 7!R3; �(u; v)= (u;
v; f(u; v)) be an arbitrary surface patch. All we need to show is that the area of �(u; v) is
no less than the area of U .

Exercise 4. Point out as many gaps as you can in the above set up. Can you �ll them?

Now we calculate

�u=(1; 0; fx); �v=(0; 1; fy) (61)

and

�u��v=(¡fx;¡fy; 1): (62)

Therefore we have

Area of � =

Z
U

k�u��vk dudv

=

Z
U

1+ fx
2+ fy

2
p

dudv

=

Z
U

dudv=Area of U: (63)

Thus ends the proof. �

Exercise 5. What if C is a curve on the cylinder? the sphere?

5.2. Variational analysis

� When the curve is not a plane curve the situation becomes much more complicated.

� We rely one variational analysis to obtain some characterizing equation for this min-
imal surface.

� Variational analysis is an upgrade of �taking derivative and set it to zero� in �rst year
calculus.
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� Let �0(u; v): U 7! R3 be a surface patch for the minimal surface. Thus we have
�0(@U) = C. Now let �(u; v): U 7! R3 be an arbitrary surface patch satisfying
�(@U) = f0g. Thus at least for � 2 R with j� j small, we have �� := �0 + � � to be
another surface patch with the same boundary C.

� Now de�ne

A(� ) :=
Z
U

k�u� ��v�kdudv (64)

we clearly have A(0)6A(� ). Consequently we must have A0(� )= 0.

� We calculate

�u
� = �u

0+ � �u; �v
� = �v

0+ � �v (65)

and therefore

�u
� ��v� =�u

0��v0+ � [�u
0��v+ �u��v0] + � 2�u��v: (66)

Let's denote for now

V0 :=�u
0��v0; V1 :=�u

0� �v+ �u��v0; V2 :=�u��v: (67)

� Thus we have

A(� )=
Z
U

V0 �V0+2 � V0 �V1+O(� 2)
p

dudv (68)

Taking � -derivative we obtain

A0(0)=
Z
U

V0 �V1
V0 �V0

p dudv=

Z
U

V0 �V1
EG¡F2

p du dv: (69)

� To calculate V0 �V1 we use the vector identity

(a� b) � (c� d)= (a � c) (b � d)¡ (a � d) (b � c): (70)

This leads to

V0 �V1 = (�u
0��v0) � (�u0��v)+ (�u

0��v0) � (�u��v0)
= (�u

0 ��u0) (�v0 ��v)¡ (�u0 ��v) (�v0 ��u0)+ (�u
0 ��u) (�v0 ��v0)¡ (�u0 ��v0) (�u ��v0)

= E (�v
0 ��v)¡F (�u

0 ��v+ �u ��v0)+G (�u
0 ��u): (71)

� To simplify (71) we notice that�
G ¡F
¡F E

�
=(EG¡F2)

�
E F
F G

�
: (72)

This inspires us to write

�u= a11�u
0+ a12�v

0+ a13N0; �v= a21�u
0+ a22�v

0+ a23N0: (73)

Therefore

�u ��u0=Ea11+Fa12; �u ��v0=Fa11+Ga12; (74)

�v ��u0=Ea21+Fa22; �v ��v0=Fa21+Ga22: (75)
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Substituting into (71) we have

V0 �V1=(a11+ a22) (EG¡F2): (76)

Thus

A0(0)=
Z
U

(a11+ a22) EG¡F2
p

dudv (77)

� Finally, we notice that as � is arbitrary, we could restrict ourselves to �(u; v)= f(u;
v)N0(u; v) where f(u; v) is a scalar function vanishing on @U . Thus we have

�u= fNu
0+ fuN

0; �v= fNv
0+ fvN

0: (78)

Comparing with (73), we see that a11+ a22=¡2 fH. Consequently

A0(0)=¡2
Z
U

fH EG¡F2
p

dudv=¡2
Z
S0
fH dS (79)

where the last is the surface integral as de�ned in multivariable calculus.

� Since f is arbitrary, for A0(0)= 0 we must have H =0.

Definition 7. (Minimal surface) 4A minimal surface is a surface whose mean curvature
is zero everywhere.

5.3. Examples

Example 8. A plane region is a minimal surface; The cylinder is not a minimal surface.

Example 9. 5Any ruled minimal surface is an open subset of a plane or a helicoid.

Proof. Let �(u; v) = �(u) + v l(u) be a surface patch for the ruled minimal surface. We
calculate

�u=�0+ v l 0; �v= l; �u��v=(�0+ v l 0)� l
�uu=�00+ v l 00; �uv= l 0; �vv=0

: (80)

Therefore

E=(�0+ v l 0) � (�0+ v l 0); F=(�0+ v l 0) � l; G= l � l;

L=
(�00+ v l 00) � [(�0+ v l 0)� l]

k(�0+ v l 0)� lk ; M=
l 0 � [(�0+ v l 0)� l]
k(�0+ v l 0)� lk ; N=0:

(81)

Now we make simplifying assumptions.

� It is clear that we can assume kl(u)k=1. This simpli�es (81) to

E=(�0+ v l 0) � (�0+ v l 0); F=�0 � l; G=1;

L=
(�00+ v l 00) � [(�0+ v l 0)� l]

k(�0+ v l 0)� lk ; M=
l 0 � [(�0+ v l 0)� l]
k(�0+ v l 0)� lk ; N=0:

(82)

4. De�nition 12.1.2 in the textbook.

5. Proposition 12.2.4 in the textbook.
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� We can further assume kl 0(u)k=1.

Now H =0 implies LG¡ 2MF=0 which becomes

[�00+ v l 00¡ 2 (�0 � l) l 0] � [(�0+ v l 0)� l] = 0: (83)

Expanding (83) into powers of v, we see that

[(l 0� l) � l 00] v2+ [(l 0� l) ��00+(�0� l) � l 00] v+ [(�0� l) ��00¡ 2 (�0 � l) ((�0� l) � l 0)] = 0: (84)

(84) must hold for all v. Consequently

(l 0� l) � l 00 = 0; (85)
(l 0� l) ��00+(�0� l) � l 00 = 0; (86)

(�0� l) ��00¡ 2 (�0 � l) ((�0� l) � l 0) = 0: (87)

Now by (85) we conclude that l(u) has zero torsion and is a plane curve. But by our
assumption l(u) is also a spherical curve. Consequently l(u) is a circle. In fact since l belongs
to the same plane as this circle, l(u) must be a big circle on the unit sphere. Consequently
we have l 00=¡l.

Now notice that fl; l 0; N = l � l 0g form an orthonormal basis. Thus we write �0 =
� l+ � l 0+ 
N . Taking derivative and using the facts that N is a constant vector as well as
l 00=¡l, we have

�00=(�0¡ �) l+(�+ �0) l 0+ 
 0N: (88)

By (86) we have (l 0� l) ��00=0 which means 
 0=0 so 
= 
0 is a constant.
Finally we take spanfl; l 0g to be the x-y plane. Thus we have

�(u)= (f(u); g(u); 
0u+ 
1) (89)

where 
0; 
1 are constants, and l(u)= (cosu; sinu; 0). Now there are two cases.

� 
0=0. Clearly � is part of a plane (recall that l also is in the x-y plane;

� 
0=/ 0. In this case (87) simpli�es to

g 00 cosu¡ f 00 sinu=2 (f 0 cosu+ g 0 sinu): (90)

Now notice that we can always pick �(u) such that �0(u) � l(u) = 0. This gives
f 0 cosu+ g 0 sinu=0 and consequently

(g 0 cosu¡ f 0 sinu)0=0=) g 0 cosu¡ f 0 sinu= c0 (91)

Putting together

f 0 cosu+ g 0 sinu = 0 (92)
¡f 0 sinu+ g 0 cosu = c0 (93)

we reach

f 0=¡c0 sinu; g 0= c0 cosu (94)

which means

f = c1+ c0 cosu; g= c2+ c0 sinu: (95)
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So �nally we have

�(u; v)= (c1+(v+ c0) cosu; c2+(v+ c0) sinu; 
0u+ 
1) (96)

which is the same as

�(u; v)= (c1+ v cosu; c2+ v sinu; 
1+ 
0u); (97)

a helicoid. �

Remark 10. Note that the helicoid is not developable.

6. Developable surfaces (optional)
Recall that we have proved that the only developable surfaces are the plane, the (generalized)
cylinder, the (generalized) cone, and a class of surfaces called �tangent developables�. In the
proof we left one big gap: the claim that any developable surface must be ruled. Now we
�nally are able to �ll this gap.

In the following we assume S is a developable surface, that is a surface having local
isometries with the �at plane. Recall that a local isometry f : S1 7! S2 is characterized by
the fact that for every surface patch �1 for S1, if we denote by �2 := f � �1, then the �rst
fundamental forms are identical: E1=E2;F1=F2;G1=G2.

Lemma 11. S must have Gaussian curvature zero everywhere.

Proof. Left as exercise. �

Proposition 12. (Proposition 8.4.2 of the textbook) Let p 2 S be such that the
principal curvatures �1=/ �2 there. Then there is a straight line segment passing p while at
the same time contained in S. In other words, S is a ruled surface.

Proof.

i. Pick �(u; v) such that the �rst and second fundamental forms are

Edu2+Gdv2; Ldu2+Ndv2: (98)

Exercise 6. Why can this be done?

ii. Since K =0, there must hold LN= 0. Note that if both L;N=0, then �1= �2= 0.
Therefore we can assume L=/ 0 or N=/ 0. We study the case L=/ 0 and leave the case
N=/ 0 as exercise. Note that if L=/ 0 then necessarily N=0.

iii. The second fundamental form is now Ldu2. We will prove that �(u0; v) is a straight
line. Since

Nu=¡E¡1L�u; Nv=0; (99)

we have T = �v

G1/2
and Tv �Nu=0; Tv �N =0; Tv �T =0: This implies Tv=0 and we are

done. �

Exercise 7. What happens if �1=�2=0?
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