
Lectures 10�11: How Does a Surface Curve

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we study how to measure the curving of a surface patch.
The required textbook sections are �7.1�7.3.

I try my best to make the examples in this note di�erent from examples in the textbook.
Please read the textbook carefully and try your hands on the exercises. During this please
don't hesitate to contact me if you have any questions.
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Let S be a surface and let p0 2 S. Let �: U 7!R3 be a surface patch covering p0. Let
�(u0;v0)= p0. In the following we study three ways to measure how the surface curves at p0.

1. Distance to the tangent plane

� We measure the curving of the surface by calculating how quickly the surface curves
away from its tangent plane at p0. Note that the tangent plane is the best �at
approximation of the surface that passes p0.

� Recall that the equation for the tangent plane in R3 is given by

(x¡ p0) �N(p0)=0: (1)

� Let p= �(u; v) 2 S be a point close to p. Then we have its distance to the tangent
plane to be

d(u; v)= j(�(u; v)¡�(u0; v0)) �N(�(u0; v0))j: (2)

� We calculate d(u; v) through Taylor expansion:

(�(u; v)¡�(u0; v0)) �N(�(u0; v0)) = [�u (u¡u0)+ �v (v¡ v0)] �N

+

�
1
2
�uu (u ¡ u0)2 + �uv (u ¡ u0) (v ¡ v0) +

1
2
�vv (v¡ v0)2

�
�N +R(u; v) �N

=
1
2
[L (u ¡ u0)2 + 2 M (u ¡ u0) (v ¡ v0) +

N (v¡ v0)2] +R(u; v) �N; (3)

where lim(u;v)¡!(u0;v0)
jR(u; v)j

(u¡u0)2+(v¡ v0)2
=0.

� Thus we see that the curving of the surface at p0 can be characterized by three
numbers:

L(u0; v0) := �uu(u0; v0) �N(u0; v0); (4)
M(u0; v0) := �uv(u0; v0) �N(u0; v0); (5)
N(u0; v0) := �vv(u0; v0) �N(u0; v0): (6)

Exercise 1. Would we obtain the same numbers if we use N(�(u; v)) instead of N(�(u0; v0))
in (2)?

2. The turning of the unit normal

� Recall that the unit normal vector N(p) := �u��v
k�u��vk

can be thought of as a mapping
from S to the unit sphere S2. This map is called the Gauss map and will be denote
by G.
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From now on we will use G to denote the Gauss map from a point p 2 S
to the unit normal there, and will use the old notation N in the following way:
N(u; v) := G(�(u; v)), that is N := G ��.

Notation Change!

� The curving of S at p0 should be characterized by the di�erentialDp0G. Recall that for
a velocity w2Tp0S, Dp0G(w) is the angular velocity of the turning of the unit normal.

Definition 1. (Definition 7.2.1 in the textbook) We de�ne the Weingarten
map

Wp0;S :=¡Dp0G (7)

where G is the Gauss map.

Note the minus sign here.

Example 2. We try to calculate Wp0;S(�u) and Wp0;S(�v) for the following surface
patches. It is clear that

Wp0;S(�u)=¡Nu; Wp0;S(�v)=¡Nv: (8)

a) S is the plane �(u; v)= (u; v; 3u+2 v).
In this case we have

�u=(1; 0; 3); �v=(0; 1; 2) (9)

which give

N(u; v)= G(�(u; v))= �u��v
k�u� �vk

=
1

14
p (¡3;¡2; 1): (10)

We see that W(�u)=W(�v)=0.

b) S is the cylinder �(u; v)= (cosu; sinu; v).
In this case we have

�u=(¡sinu; cosu; 0); �v=(0; 0; 1) (11)

and

N(u; v)=
�u��v
k�u��vk

=(cosu; sinu; 0): (12)

We have

Nu=(¡sinu; cosu; 0)=�u; Nv=(0; 0; 0): (13)

Consequently we have

W(�u)=¡�u; W(�v)=0: (14)

c) S is the unit sphere �(u; v)=
¡
u; v; 1¡u2¡ v2

p �
.

We have

�u=

�
1; 0;

¡u
1¡u2¡ v2

p
�
; �v=

�
0; 1;

¡v
1¡u2¡ v2

p
�

(15)
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and

N(u; v)=
¡
u; v; 1¡u2¡ v2

p �
= �(u; v): (16)

Consequently

W(�u)=¡Nu; W(�v)=¡Nv: (17)

d) S is the hyperbolic paraboloid �(u; v)= (u; v; u v) with p0=(0; 0; 0).
We have

�u=(1; 0; v); �v=(0; 1; u) (18)

and

N(u; v)=

�
¡v

1+u2+ v2
p ;

¡u
1+u2+ v2

p ;
1

1+u2+ v2
p

�
: (19)

Now we calculate

W(�u)=¡Nu=

 
¡u v

(1+u2+ v2)3/2
;

1+ v2

(1+ u2+ v2)3/2
;

u

(1+ u2+ v2)3/2

!
(20)

and

W(�v)=¡Nv=

 
1+u2

(1+u2+ v2)3/2
;

¡u v
(1+u2+ v2)3/2

;
v

(1+u2+ v2)3/2

!
: (21)

We see that

W(�u)=¡
u v

(1+u2+ v2)3/2
�u+

1+ v2

(1+u2+ v2)3/2
�v (22)

and

W(�v)=
1+ u2

(1+u2+ v2)3/2
�u¡

u v

(1+u2+ v2)3/2
�v: (23)

Exercise 2. Try to interpret the above calculation results. What exactly does W do in each
case?

� Failed attempts to understand the Weingarten map. Naturally we would like to calculate
the matrix representation of Wp0;S. Let �~:U~ 7!S2 be a surface patch of S2 covering
N(p0). Then we have

F (u; v)=�~¡1 � (¡G) ��=�~¡1
�
¡ �u��v
k�u��vk

�
: (24)

Consequently

DF (u; v)=¡D(�~¡1) �
� �

�u��v
k�u��vk

�
u

�
�u��v
k�u��vk

�
v

�
(25)

where
�

�u��v
k�u��vk

�
u
;
�

�u��v
k�u��vk

�
v
are written as column vectors.

Exercise 3. Try to carry out the calculation.

Exercise 4. Try to instead calculate the �rst fundamental form of the sphere S2 by the surface
patch G(�(u;v)). Note that this �rst fundamental form is also called the third fundamental form
of S.
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� The key observation.

Remark 3. There is indeed one particular surface patch �~ which allows us to easily
calculate the matrix representation of DpG. However this matrix representation is
useless.

Exercise 5. What is this matrix representation if we take �~=N? Why is it useless?

We have seen that W(�u) =¡Nu, W(�v) =¡Nv. As W is linear, for a; b2R we
have

W(a �u+ b �v)=¡aNu¡ bNv: (26)

Therefore to understand W we need to understand Nu; Nv. The crucial observation
is the following.

Nu;Nv?N =)¡Nu= a11�u+ a12�v;¡Nv= a21�u+ a22�v.

� Calculating a11; :::; a22.

Theorem 4. We have�
a11 a21
a12 a22

�
=

�
E F
F G

�¡1� L M
M N

�
(27)

where Edu2+2Fdu dv+Gdv2 is the �rst fundamental form of S at p0, and L;M;
N are de�ned in ( 4�6).

Proof. We notice that as �u �N = �v �N =0, there holds

L= �uu �N =(�u �N)u¡�u �Nu=¡�u �Nu (28)

and similarly

M=¡�v �Nu=¡�u �Nv; N=¡�v �Nv: (29)

This leads to

Ea11+Fa12 = �u � (a11�u+ a12�v)=¡�u �Nu=L; (30)
Fa11+Ga12 = �v � (a11�u+ a12�v)=¡�v �Nu=M: (31)

Consequently �
a11
a12

�
=

�
E F
F G

�¡1� L
M

�
: (32)

Similarly we have
�
a21
a22

�
=
�

E F
F G

�¡1� M
N

�
and the conclusion follows. �

3. How much are the curves in the surface curving?
� Let x(t) := �(u(t); v(t)) be a curve in S with u(t0) = u0; v(t0) = v0. Thus it passes

p0=�(u0; v0). We try to understand the curving of S at p0 through the curvature of
x(t) at x(t0).
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� To make this idea work we need to �rst qualitatively understand how are the curving
of S at p and the curvature of x(t) related.

Example 5. We consider the following paradigm situations.

� Let S be the plane and p0 2 S. Clearly a curve passing p0 can have any
curvature.

� Let S be the cylinder and p02S. Again a curve passing p0 can have arbitrary
�0> 0 as its curvature there.

� Let S be the unit sphere. Intuitively we see that a curve passing p02S could
have any curvature >1 but not <1.

Exercise 6. Prove this.

From these examples it seems that the relations between the curvature of x(t) and
the curving S is very loose. However, this relation becomes much more precise when
we consider not all possible curvatures, but the minimal one:

Given any unit vector w 2 Tp0S, let �min(w) be the minimal curva-
ture of all possible curvatures of the curves passing p0 and are tangent
to w at p0.

Now we see that �min very precisely re�ects the curving of the surface.

� For S the �at plane: �min(w)=0 for all w;

� For S the cylinder: �min(w)=0 when w=(0;0; 1) and �n(w)=1 when w is the
horizontal tangent, and �min(w) lies between 0 and 1 for other directions.

� For S the sphere: �min(w)=1 for all w.

� What is �min(w)?
First we re-parametrize by arc length x(s)= �(u(s); v(s)). We calculate

x0(s)= u0(s)�u+ v
0(s)�v; (33)

x00(s)=u00(s)�u+ v 00(s)�v+ u0(s)2�uu+2u0(s) v 0(s)�uv+ v 0(s)2�vv: (34)

Let T ;N be the unit tangent and normal of the curve x(s) at x(s0)= p0, and denote
by NS :=

�u��v
k�u��vk

the unit normal at p0=�(u0; v0). As we require x(s) to be tangent
to a �xed direction, u0(s0); v 0(s0) are �xed. Therefore we further denote

u1 := u0(s0); v1 := v 0(s0) (35)

to emphasize this point. Thus we have

x00(s0)= u00(s0)�u+ v 00(s0) �v+u1
2�uu+2u1 v1�uv+ v1

2�vv: (36)

Next observe that N kx00(s0)?T ; T?NS. We see that

�> jx00(s0) �NS j= jLu12+2Mu1 v1+Nv1
2j (37)

thanks to the fact that �u �NS=�v �NS=0.
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As �u; �v form a basis of Tp0S, it is always possible to �nd u00(s0); v 00(s0) such that
x00(s0) kNS. Consequently, we conclude (when ku1�u+ v1�vk=1)

�min(u1�u+ v1�v)= jLu12+2Mu1 v1+N v1
2j: (38)

Remark 6. A curve x(t) = �(u(t); v(t)) satisfy �(t) = j�min(T (t))j at every t if and
only if u(t); v(t) satisfy the following equations

d
dt
(Eu0+Fv 0) =

1
2
(Eu (u

0)2+2Fuu
0 v 0+Gu (v

0)2); (39)

d
dt
(Fu0+Gv 0) =

1
2
(Ev (u0)2+2Fvu0 v 0+Gv (v 0)2): (40)

Exercise 7. Prove this.

� Normal and geodesic curvatures.

Definition 7. Let x(t) := �(u(t); v(t)) be a curve in S passing p0= �(u(t0); v(t0)).
Denote by T ; N the unit tangent direction and unit normal direction of x(t) at p0,
and by NS the unit normal direction of S at p0. Denote by � the curvature of x(t) at
p0. Then

�N =�nNS+�g (NS�T ): (41)

We call �n the normal curvature and �g the geodesic curvature of x(t) at p0.

� Properties.

� There holds

�2=�n
2 +�g

2: (42)

� j�nj is the smallest possible curvature for all curves in S passing p0 with x0(t)
parallel to the �xed direction w2Tp(S).

� Let w2TpS be �xed. Let x(t) be the intersection of S with the plane passing
p0 spanned by w and NS

1. Then the curvature of x(t) at p0 is j�nj.

The curvature of x(t) at p=/ p0 may not equal to j�n(p)j anymore.

Exercise 8. Find an example illustrating this. (One possibility is cylinder).

Warning

� In general, we have

�n=� cos  ; �g=�� sin  (43)

where  is the angle between NS and N .
In particular, if x(t) is the intersection of S with a plane passing the line

through p0 in the direction w, then the curvature of x(t) at p0 is given by

�=
j�nj
cos  

(44)

1. Such x(t) is called a �normal section�
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where  is the angle between the plane and the unit normal NS to the surface
at p0.

4. The second fundament form

4.1. De�nition

First we summarize our three approaches.

1. The distance of a point �(u;v) to the tangent plane at p0=�(u0; v0) is
1

2
[L (u¡u0)2+

2M (u¡ u0) (v¡ v0)+N (v¡ v0)2];

2. The Weingarten map W =¡Dp0G is given by

W(��u+ ��v)=� (a11�u+ a12�v)+ � (a21�u+ a22�v) (45)

where �
a11 a21
a12 a22

�
=

�
E F
F G

�¡1� L M
M N

�
(46)

3. At p0, if we �x a unit vector w := u1 �u + v1 �v 2 Tp0S, and consider all curves x(t)
satisfying x(t0)= p0, x0(t0) kw, then there holds

�(t0)> j�n(w)j (47)

where

�n(w) :=Lu1
2+2Mu1 v1+Nv1 (48)

is called the normal curvature of S at p0 in the direction w. One particular curve
among those satisfying x(t0)= p0, x0(t0)kw with �(t0)= j�n(w)j is the curve obtained
as the intersection between S and the plane passing p0 spanned by NS and w.

We see that the three numbers (functions if we consider all p 2 S) L;M;N plays a crucial
role in determining how much a surface curves. This inspires the following de�nition.

Definition 8. (The second fundamental form) Let S be a surface and p02S. Let �
be a surface patch of S covering p0: p0= �(u0; v0). Then the second fundamental form of S
at p0, denoted hh�;iip0;S (with p; S omitted when no confusion may arise), is a bilinear form
on Tp0S de�ned through

L(u0; v0) du2+2M(u0; v0) dudv+N(u0; v0) dv2 (49)

where

L(u0; v0) := �uu(u0; v0) �N(u0; v0)=¡�u �Nu; (50)
M(u0; v0) := �uv(u0; v0) �N(u0; v0)=¡�u �Nv=¡�v �Nu; (51)
N(u0; v0) := �vv(u0; v0) �N(u0; v0)=¡�v �Nv: (52)

Remark 9. If w=w1�u+w2�v and w~ =w~1�u+w~2�v, then we have

hhw;w~ii=Lw1w~1+M (w1w~2+w2w~1)+Nw2w~2: (53)
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Remark 10. Let x(t)= �(u(t); v(t)). We clearly have

�n=L (u0)2+2Mu0 v 0+N (v 0)2= hhx0; x0iix(t);S (54)

when x(t) is parametrized by arc length. We can further prove the following general formula.

�n(p)=
hh�; �iip;S
h�; �ip;S

: (55)

As a consequence, when x(t) is not parametrized by arc length, we have

�n=
hhx0; x0iix(t);S
hx0; x0ix(t);S

=
L (u0)2+2Mu0 v 0+N (v 0)2

E (u0)2+2Fu0 v 0+G (v 0)2
: (56)

Remark 11. From (56) we make the following crucial observation:

The normal curvature �n is totally determined by the surface and the tangent direction
of the curve.

4.2. Properties

The second fundamental form is closely related to the �rst fundamental form.

Lemma 12. Let w;w~ 2TpS. Then

hhw;w~iip;S= hWp;S(w); w~ ip;S= hw;Wp;S(w~)ip;S: (57)

Proof. Since hhw;w~iip;S, hWp;S(w);w~ip;S, and hw;Wp;S(w~)ip;S are all bilinear, it su�ces to
prove the following cases: w= �u; w~ = �v; w=w~ = �u; w=w~ = �v; w= �v; w~ = �u. We prove
the �rst one and leave the other three as exercises.

We calculate

hh�u; �viip;S=M: (58)

On the other hand, Wp;S(�u)=¡Nu= a11�u+ a12�v where�
a11
a12

�
=

�
E F
F G

�¡1� L
M

�
: (59)

Consequently

hWp;S(�u); �vip;S = a11 h�u; �vip;S+ a12 h�v; �vip;S
= a11F+ a12G

= ( F G )

�
E F
F G

�¡1� L
M

�
= ( 0 1 )

�
L
M

�
=M: (60)

Note that we have used�
E F
F G

��
E F
F G

�¡1
=

�
1 0
0 1

�
=) ( F G )

�
E F
F G

�¡1
=( 0 1 ): (61)
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The proof that h�u;Wp;S(�v)ip;S=M is similar. �

5. Examples

5.1. Calculation of the second fundamental form

Example 13. Consider the unit sphere
¡
u; v; 1¡u2¡ v2

p �
. We calculate

�u=

�
1; 0;

¡u
1¡u2¡ v2

p
�
; �v=

�
0; 1;

¡v
1¡u2¡ v2

p
�

(62)

which gives

N(u; v)=
�u��v
k�u��vk

=
¡
u; v; 1¡u2¡ v2

p �
=�(u; v): (63)

Therefore

L(u; v) = ¡�u �Nu=
v2¡ 1

1¡u2¡ v2 ; (64)

M(u; v) = ¡�u �Nv=
¡u v

1¡u2¡ v2 ; (65)

N(u; v) = ¡�v �Nv=
u2¡ 1

1¡ u2¡ v2 : (66)

Example 14. Consider the unit sphere in spherical coordinates (cosu cosv;cosu sinv; sinu).
We calculate

�u=(¡sinu cos v;¡sinu sin v; cosu); �v=(¡cosu sin v; cosu cos v; 0) (67)

which gives

N(u; v)= (cosu cos v; cosu sin v; sinu): (68)

Therefore

L(u; v) = ¡1; (69)
M(u; v) = 0; (70)
N(u; v) = ¡cos2u: (71)

Example 15. Consider the surface patch �(u; v)= (u; v; u2+ v2). We have

�u=(1; 0; 2 u); �v=(0; 1; 2 v); (72)

�uu=�vv=(0; 0; 2); �uv=(0; 0; 0); (73)

and

N =
�u��v
k�u��vk

=
(¡2u;¡2 v; 1)
1+ 4u2+4 v2

p : (74)

Thus we have

L= �uu �N =
2

1+4u2+4 v2
p ; (75)

M=�uv �N =0; (76)

N=�vv �N =
2

1+4u2+4 v2
p : (77)
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So the second fundamental form is

2

1+ 4u2+4 v2
p (du2+dv2): (78)

Exercise 9. Does this mean at any point p2S, the normal curvature �n is a constant in every direction?

Example 16. Consider a ruled surface �(u; v) =�(u) + v l(u) where l(u) is of unit length.
We calculate

�u=�0(u)+ v l 0(u); �v= l(u): (79)

This gives

N(u; v)=
�u��v
k�u��vk

=
�0(u)� l(u)+ v l 0(u)� l(u)
k�0(u)� l(u)+ v l 0(u)� l(u)k : (80)

We further calculate

�uu=�00(u)+ v l 00(u); �uv= l 0(u); �vv=0: (81)

Therefore if we set A= k�u��vk.

L(u; v) = �uu �N =A¡1 (�00+ v l 00) � (�0(u)� l(u)+ v l 0(u)� l(u)); (82)
M(u; v) = �uv �N =A¡1 l 0 � (�0� l); (83)
N(u; v) = �vv �N =0: (84)

Recalling lecture 9, we see that a ruled surface is developable if and only if M=0.

5.2. Applications of the second fundamental form

Proposition 17. Let S be a surface whose second fundamental form is identically zero.
Then S is part of a plane.

Proof. Let � be a surface patch for S. Then by assumption we have Nu ��u=Nu ��v=0. As
N is the unit normal, naturally Nu �N =0. Consequently Nu=0 as f�u; �v;N g form a basis
of R3. Similarly Nv=0. Thus N is a constant vector and therefore � is part of a plane. �

Proposition 18. Let S be a suface whose second fundamental form at every p2S is a non-
zero scalar multiple of its �rst fundamental form at p. Then S is part of a sphere.

Exercise 10. Prove that if S is part of a sphere, then its second fundamental form is a non-zero scalar
multiple of its �rst fundamental form.

Proof. Let �(u; v) be a surface patch for S. Then there holds

L(u; v)= c(u; v)E(u; v); M(u; v)= c(u; v)F(u; v); N(u; v)= c(u; v)G(u; v) (85)

for every (u; v). This leads to�
E F
F G

�¡1� L M
M N

�
= c(u; v)

�
1 0
0 1

�
: (86)
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As a consequence, we have

Nu+ c(u; v) �u=0; Nv+ c(u; v)�v=0 (87)

at every (u; v). Taking v; u derivatives of the two equations respectively, we have

Nuv+ cv�u+ c �uv=0=Nvu+ cu�v+ c �vu=) cv�u= cu�v: (88)

As �u; �v form a basis of TpS, there must hold cv= cu=0, that is c(u; v)= c is a constant.
Now (87) becomes

(N + c �)u=(N + c �)v=0=)N + c �= r0 (89)

is a constant. In other words, we have

�+ c¡1N = c¡1 r0 (90)

is a constant which means � is part of the sphere centered at c¡1 r0 and with radius jcj¡1. �
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