Lectures 10-11: How Does a Surface Curve

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams.

> In this lecture we study how to measure the curving of a surface patch. The required textbook sections are $\S 7.1-7.3$.

I try my best to make the examples in this note different from examples in the textbook. Please read the textbook carefully and try your hands on the exercises. During this please don't hesitate to contact me if you have any questions.

TABLE OF CONTENTS

Lectures 10-11: How Does a Surface Curve 1

1. Distance to the tangent plane . 2
2. The turning of the unit normal . 2
3. How much are the curves in the surface curving? 5
4. The second fundament form . 8
4.1. Definition . 8
4.2. Properties . 9
5. Examples . 10
5.1. Calculation of the second fundamental form 10
5.2. Applications of the second fundamental form 11

Let S be a surface and let $p_{0} \in S$. Let $\sigma: U \mapsto \mathbb{R}^{3}$ be a surface patch covering p_{0}. Let $\sigma\left(u_{0}, v_{0}\right)=p_{0}$. In the following we study three ways to measure how the surface curves at p_{0}.

1. Distance to the tangent plane

- We measure the curving of the surface by calculating how quickly the surface curves away from its tangent plane at p_{0}. Note that the tangent plane is the best flat approximation of the surface that passes p_{0}.
- Recall that the equation for the tangent plane in \mathbb{R}^{3} is given by

$$
\begin{equation*}
\left(x-p_{0}\right) \cdot N\left(p_{0}\right)=0 \tag{1}
\end{equation*}
$$

- Let $p=\sigma(u, v) \in S$ be a point close to p. Then we have its distance to the tangent plane to be

$$
\begin{equation*}
d(u, v)=\left|\left(\sigma(u, v)-\sigma\left(u_{0}, v_{0}\right)\right) \cdot N\left(\sigma\left(u_{0}, v_{0}\right)\right)\right| . \tag{2}
\end{equation*}
$$

- We calculate $d(u, v)$ through Taylor expansion:

$$
\begin{align*}
\left(\sigma(u, v)-\sigma\left(u_{0}, v_{0}\right)\right) \cdot N\left(\sigma\left(u_{0}, v_{0}\right)\right)= & {\left[\sigma_{u}\left(u-u_{0}\right)+\sigma_{v}\left(v-v_{0}\right)\right] \cdot N } \\
& +\left[\frac{1}{2} \sigma_{u u}\left(u-u_{0}\right)^{2}+\sigma_{u v}\left(u-u_{0}\right)\left(v-v_{0}\right)+\right. \\
& \left.\frac{1}{2} \sigma_{v v}\left(v-v_{0}\right)^{2}\right] \cdot N+R(u, v) \cdot N \\
= & \frac{1}{2}\left[\mathbb{L}\left(u-u_{0}\right)^{2}+2 \mathbb{M}\left(u-u_{0}\right)\left(v-v_{0}\right)+\right. \\
& \left.\mathbb{N}\left(v-v_{0}\right)^{2}\right]+R(u, v) \cdot N, \tag{3}
\end{align*}
$$

where $\lim _{(u, v) \longrightarrow\left(u_{0}, v_{0}\right)} \frac{|R(u, v)|}{\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2}}=0$.

- Thus we see that the curving of the surface at p_{0} can be characterized by three numbers:

$$
\begin{align*}
\mathbb{L}\left(u_{0}, v_{0}\right) & :=\sigma_{u u}\left(u_{0}, v_{0}\right) \cdot N\left(u_{0}, v_{0}\right), \tag{4}\\
\mathbb{M}\left(u_{0}, v_{0}\right) & :=\sigma_{u v}\left(u_{0}, v_{0}\right) \cdot N\left(u_{0}, v_{0}\right), \tag{5}\\
\mathbb{N}\left(u_{0}, v_{0}\right) & :=\sigma_{v v}\left(u_{0}, v_{0}\right) \cdot N\left(u_{0}, v_{0}\right) . \tag{6}
\end{align*}
$$

Exercise 1. Would we obtain the same numbers if we use $N(\sigma(u, v))$ instead of $N\left(\sigma\left(u_{0}, v_{0}\right)\right)$ in (2)?

2. The turning of the unit normal

- Recall that the unit normal vector $N(p):=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}$ can be thought of as a mapping from S to the unit sphere \mathbb{S}^{2}. This map is called the Gauss map and will be denote by \mathcal{G}.

Notation Change!

From now on we will use \mathcal{G} to denote the Gauss map from a point $p \in S$ to the unit normal there, and will use the old notation N in the following way: $N(u, v):=\mathcal{G}(\sigma(u, v))$, that is $N:=\mathcal{G} \circ \sigma$.

- The curving of S at p_{0} should be characterized by the differential $D_{p_{0}} \mathcal{G}$. Recall that for a velocity $w \in T_{p_{0}} S, D_{p_{0}} \mathcal{G}(w)$ is the angular velocity of the turning of the unit normal.

Definition 1. (Definition 7.2.1 in the textbook) We define the Weingarten map

$$
\begin{equation*}
\mathcal{W}_{p_{0}, S}:=-D_{p_{0}} \mathcal{G} \tag{7}
\end{equation*}
$$

where \mathcal{G} is the Gauss map.
Note the minus sign here.
Example 2. We try to calculate $\mathcal{W}_{p_{0}, S}\left(\sigma_{u}\right)$ and $\mathcal{W}_{p_{0}, S}\left(\sigma_{v}\right)$ for the following surface patches. It is clear that

$$
\begin{equation*}
\mathcal{W}_{p_{0}, S}\left(\sigma_{u}\right)=-N_{u}, \quad \mathcal{W}_{p_{0}, S}\left(\sigma_{v}\right)=-N_{v} . \tag{8}
\end{equation*}
$$

a) S is the plane $\sigma(u, v)=(u, v, 3 u+2 v)$.

In this case we have

$$
\begin{equation*}
\sigma_{u}=(1,0,3), \quad \sigma_{v}=(0,1,2) \tag{9}
\end{equation*}
$$

which give

$$
\begin{equation*}
N(u, v)=\mathcal{G}(\sigma(u, v))=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}=\frac{1}{\sqrt{14}}(-3,-2,1) . \tag{10}
\end{equation*}
$$

We see that $\mathcal{W}\left(\sigma_{u}\right)=\mathcal{W}\left(\sigma_{v}\right)=0$.
b) S is the cylinder $\sigma(u, v)=(\cos u, \sin u, v)$.

In this case we have

$$
\begin{equation*}
\sigma_{u}=(-\sin u, \cos u, 0), \quad \sigma_{v}=(0,0,1) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
N(u, v)=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}=(\cos u, \sin u, 0) \tag{12}
\end{equation*}
$$

We have

$$
\begin{equation*}
N_{u}=(-\sin u, \cos u, 0)=\sigma_{u}, \quad N_{v}=(0,0,0) . \tag{13}
\end{equation*}
$$

Consequently we have

$$
\begin{equation*}
\mathcal{W}\left(\sigma_{u}\right)=-\sigma_{u}, \quad \mathcal{W}\left(\sigma_{v}\right)=0 \tag{14}
\end{equation*}
$$

c) S is the unit sphere $\sigma(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$.

We have

$$
\begin{equation*}
\sigma_{u}=\left(1,0, \frac{-u}{\sqrt{1-u^{2}-v^{2}}}\right), \quad \sigma_{v}=\left(0,1, \frac{-v}{\sqrt{1-u^{2}-v^{2}}}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
N(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)=\sigma(u, v) . \tag{16}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\mathcal{W}\left(\sigma_{u}\right)=-N_{u}, \quad \mathcal{W}\left(\sigma_{v}\right)=-N_{v} . \tag{17}
\end{equation*}
$$

d) S is the hyperbolic paraboloid $\sigma(u, v)=(u, v, u v)$ with $p_{0}=(0,0,0)$.

We have

$$
\begin{equation*}
\sigma_{u}=(1,0, v), \quad \sigma_{v}=(0,1, u) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
N(u, v)=\left(\frac{-v}{\sqrt{1+u^{2}+v^{2}}}, \frac{-u}{\sqrt{1+u^{2}+v^{2}}}, \frac{1}{\sqrt{1+u^{2}+v^{2}}}\right) . \tag{19}
\end{equation*}
$$

Now we calculate

$$
\begin{equation*}
\mathcal{W}\left(\sigma_{u}\right)=-N_{u}=\left(\frac{-u v}{\left(1+u^{2}+v^{2}\right)^{3 / 2}}, \frac{1+v^{2}}{\left(1+u^{2}+v^{2}\right)^{3 / 2}}, \frac{u}{\left(1+u^{2}+v^{2}\right)^{3 / 2}}\right) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{W}\left(\sigma_{v}\right)=-N_{v}=\left(\frac{1+u^{2}}{\left(1+u^{2}+v^{2}\right)^{3 / 2}}, \frac{-u v}{\left(1+u^{2}+v^{2}\right)^{3 / 2}}, \frac{v}{\left(1+u^{2}+v^{2}\right)^{3 / 2}}\right) \tag{21}
\end{equation*}
$$

We see that
and

$$
\begin{equation*}
\mathcal{W}\left(\sigma_{u}\right)=-\frac{u v}{\left(1+u^{2}+v^{2}\right)^{3 / 2}} \sigma_{u}+\frac{1+v^{2}}{\left(1+u^{2}+v^{2}\right)^{3 / 2}} \sigma_{v} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{W}\left(\sigma_{v}\right)=\frac{1+u^{2}}{\left(1+u^{2}+v^{2}\right)^{3 / 2}} \sigma_{u}-\frac{u v}{\left(1+u^{2}+v^{2}\right)^{3 / 2}} \sigma_{v} \tag{23}
\end{equation*}
$$

Exercise 2. Try to interpret the above calculation results. What exactly does \mathcal{W} do in each case?

- Failed attempts to understand the Weingarten map. Naturally we would like to calculate the matrix representation of $\mathcal{W}_{p_{0}, S}$. Let $\tilde{\sigma}: \tilde{U} \mapsto \mathbb{S}^{2}$ be a surface patch of \mathbb{S}^{2} covering $N\left(p_{0}\right)$. Then we have

Consequently

$$
\begin{equation*}
F(u, v)=\tilde{\sigma}^{-1} \circ(-\mathcal{G}) \circ \sigma=\tilde{\sigma}^{-1}\left(-\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}\right) . \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
D F(u, v)=-D\left(\tilde{\sigma}^{-1}\right) \cdot\left(\left(\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}\right)_{u}\left(\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}\right)_{v}\right) \tag{25}
\end{equation*}
$$

where $\left(\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}\right)_{u},\left(\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}\right)_{v}$ are written as column vectors.
Exercise 3. Try to carry out the calculation.
Exercise 4. Try to instead calculate the first fundamental form of the sphere \mathbb{S}^{2} by the surface patch $\mathcal{G}(\sigma(u, v))$. Note that this first fundamental form is also called the third fundamental form of S.

- The key observation.

Remark 3. There is indeed one particular surface patch $\tilde{\sigma}$ which allows us to easily calculate the matrix representation of $D_{p} \mathcal{G}$. However this matrix representation is useless.

Exercise 5. What is this matrix representation if we take $\tilde{\sigma}=N$? Why is it useless?
We have seen that $\mathcal{W}\left(\sigma_{u}\right)=-N_{u}, \mathcal{W}\left(\sigma_{v}\right)=-N_{v}$. As \mathcal{W} is linear, for $a, b \in \mathbb{R}$ we have

$$
\begin{equation*}
\mathcal{W}\left(a \sigma_{u}+b \sigma_{v}\right)=-a N_{u}-b N_{v} \tag{26}
\end{equation*}
$$

Therefore to understand \mathcal{W} we need to understand N_{u}, N_{v}. The crucial observation is the following.

$$
N_{u}, N_{v} \perp N \Longrightarrow-N_{u}=a_{11} \sigma_{u}+a_{12} \sigma_{v},-N_{v}=a_{21} \sigma_{u}+a_{22} \sigma_{v}
$$

- Calculating a_{11}, \ldots, a_{22}.

Theorem 4. We have

$$
\left(\begin{array}{ll}
a_{11} & a_{21} \tag{27}\\
a_{12} & a_{22}
\end{array}\right)=\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}\left(\begin{array}{cc}
\mathbb{L} & \mathbb{M} \\
\mathbb{M} & \mathbb{N}
\end{array}\right)
$$

where $\mathbb{E} \mathrm{d} u^{2}+2 \mathbb{F} \mathrm{~d} u \mathrm{~d} v+\mathbb{G} \mathrm{d} v^{2}$ is the first fundamental form of S at p_{0}, and \mathbb{L}, \mathbb{M}, \mathbb{N} are defined in (4-6).

Proof. We notice that as $\sigma_{u} \cdot N=\sigma_{v} \cdot N=0$, there holds

$$
\begin{equation*}
\mathbb{L}=\sigma_{u u} \cdot N=\left(\sigma_{u} \cdot N\right)_{u}-\sigma_{u} \cdot N_{u}=-\sigma_{u} \cdot N_{u} \tag{28}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\mathbb{M}=-\sigma_{v} \cdot N_{u}=-\sigma_{u} \cdot N_{v}, \quad \mathbb{N}=-\sigma_{v} \cdot N_{v} \tag{29}
\end{equation*}
$$

This leads to

$$
\begin{align*}
\mathbb{E} a_{11}+\mathbb{F} a_{12} & =\sigma_{u} \cdot\left(a_{11} \sigma_{u}+a_{12} \sigma_{v}\right)=-\sigma_{u} \cdot N_{u}=\mathbb{L} \tag{30}\\
\mathbb{F} a_{11}+\mathbb{G} a_{12} & =\sigma_{v} \cdot\left(a_{11} \sigma_{u}+a_{12} \sigma_{v}\right)=-\sigma_{v} \cdot N_{u}=\mathbb{M} \tag{31}
\end{align*}
$$

Consequently

$$
\binom{a_{11}}{a_{12}}=\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \tag{32}\\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}\binom{\mathbb{L}}{\mathbb{M}}
$$

Similarly we have $\binom{a_{21}}{a_{22}}=\left(\begin{array}{cc}\mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G}\end{array}\right)^{-1}\binom{\mathbb{M}}{\mathbb{N}}$ and the conclusion follows.

3. How much are the curves in the surface curving?

- Let $x(t):=\sigma(u(t), v(t))$ be a curve in S with $u\left(t_{0}\right)=u_{0}, v\left(t_{0}\right)=v_{0}$. Thus it passes $p_{0}=\sigma\left(u_{0}, v_{0}\right)$. We try to understand the curving of S at p_{0} through the curvature of $x(t)$ at $x\left(t_{0}\right)$.
- To make this idea work we need to first qualitatively understand how are the curving of S at p and the curvature of $x(t)$ related.

Example 5. We consider the following paradigm situations.

- Let S be the plane and $p_{0} \in S$. Clearly a curve passing p_{0} can have any curvature.
- Let S be the cylinder and $p_{0} \in S$. Again a curve passing p_{0} can have arbitrary $\kappa_{0} \geqslant 0$ as its curvature there.
- Let S be the unit sphere. Intuitively we see that a curve passing $p_{0} \in S$ could have any curvature $\geqslant 1$ but not <1.

Exercise 6. Prove this.
From these examples it seems that the relations between the curvature of $x(t)$ and the curving S is very loose. However, this relation becomes much more precise when we consider not all possible curvatures, but the minimal one:

Given any unit vector $w \in T_{p_{0}} S$, let $\kappa_{\min }(w)$ be the minimal curvature of all possible curvatures of the curves passing p_{0} and are tangent to w at p_{0}.
Now we see that $\kappa_{\text {min }}$ very precisely reflects the curving of the surface.

- For S the flat plane: $\kappa_{\min }(w)=0$ for all w;
- For S the cylinder: $\kappa_{\text {min }}(w)=0$ when $w=(0,0,1)$ and $\kappa_{n}(w)=1$ when w is the horizontal tangent, and $\kappa_{\min }(w)$ lies between 0 and 1 for other directions.
- For S the sphere: $\kappa_{\min }(w)=1$ for all w.
- What is $\kappa_{\text {min }}(w)$?

First we re-parametrize by arc length $x(s)=\sigma(u(s), v(s))$. We calculate

$$
\begin{gather*}
x^{\prime}(s)=u^{\prime}(s) \sigma_{u}+v^{\prime}(s) \sigma_{v} \tag{33}\\
x^{\prime \prime}(s)=u^{\prime \prime}(s) \sigma_{u}+v^{\prime \prime}(s) \sigma_{v}+u^{\prime}(s)^{2} \sigma_{u u}+2 u^{\prime}(s) v^{\prime}(s) \sigma_{u v}+v^{\prime}(s)^{2} \sigma_{v v} \tag{34}
\end{gather*}
$$

Let T, N be the unit tangent and normal of the curve $x(s)$ at $x\left(s_{0}\right)=p_{0}$, and denote by $N_{S}:=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}$ the unit normal at $p_{0}=\sigma\left(u_{0}, v_{0}\right)$. As we require $x(s)$ to be tangent to a fixed direction, $u^{\prime}\left(s_{0}\right), v^{\prime}\left(s_{0}\right)$ are fixed. Therefore we further denote

$$
\begin{equation*}
u_{1}:=u^{\prime}\left(s_{0}\right), \quad v_{1}:=v^{\prime}\left(s_{0}\right) \tag{35}
\end{equation*}
$$

to emphasize this point. Thus we have

$$
\begin{equation*}
x^{\prime \prime}\left(s_{0}\right)=u^{\prime \prime}\left(s_{0}\right) \sigma_{u}+v^{\prime \prime}\left(s_{0}\right) \sigma_{v}+u_{1}^{2} \sigma_{u u}+2 u_{1} v_{1} \sigma_{u v}+v_{1}^{2} \sigma_{v v} \tag{36}
\end{equation*}
$$

Next observe that $N \| x^{\prime \prime}\left(s_{0}\right) \perp T, T \perp N_{S}$. We see that

$$
\begin{equation*}
\kappa \geqslant\left|x^{\prime \prime}\left(s_{0}\right) \cdot N_{S}\right|=\left|\mathbb{L} u_{1}^{2}+2 \mathbb{M} u_{1} v_{1}+\mathbb{N} v_{1}^{2}\right| \tag{37}
\end{equation*}
$$

thanks to the fact that $\sigma_{u} \cdot N_{S}=\sigma_{v} \cdot N_{S}=0$.

As σ_{u}, σ_{v} form a basis of $T_{p_{0}} S$, it is always possible to find $u^{\prime \prime}\left(s_{0}\right), v^{\prime \prime}\left(s_{0}\right)$ such that $x^{\prime \prime}\left(s_{0}\right) \| N_{S}$. Consequently, we conclude (when $\left\|u_{1} \sigma_{u}+v_{1} \sigma_{v}\right\|=1$)

$$
\begin{equation*}
\kappa_{\min }\left(u_{1} \sigma_{u}+v_{1} \sigma_{v}\right)=\left|\mathbb{L} u_{1}^{2}+2 \mathbb{M} u_{1} v_{1}+\mathbb{N} v_{1}^{2}\right| \tag{38}
\end{equation*}
$$

Remark 6. A curve $x(t)=\sigma(u(t), v(t))$ satisfy $\kappa(t)=\left|\kappa_{\min }(T(t))\right|$ at every t if and only if $u(t), v(t)$ satisfy the following equations

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbb{E} u^{\prime}+\mathbb{F} v^{\prime}\right) & =\frac{1}{2}\left(\mathbb{E}_{u}\left(u^{\prime}\right)^{2}+2 \mathbb{F}_{u} u^{\prime} v^{\prime}+\mathbb{G}_{u}\left(v^{\prime}\right)^{2}\right), \tag{39}\\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbb{F} u^{\prime}+\mathbb{G} v^{\prime}\right) & =\frac{1}{2}\left(\mathbb{E}_{v}\left(u^{\prime}\right)^{2}+2 \mathbb{F}_{v} u^{\prime} v^{\prime}+\mathbb{G}_{v}\left(v^{\prime}\right)^{2}\right) \tag{40}
\end{align*}
$$

Exercise 7. Prove this.

- Normal and geodesic curvatures.

DEFINITION 7. Let $x(t):=\sigma(u(t), v(t))$ be a curve in S passing $p_{0}=\sigma\left(u\left(t_{0}\right), v\left(t_{0}\right)\right)$. Denote by T, N the unit tangent direction and unit normal direction of $x(t)$ at p_{0}, and by N_{S} the unit normal direction of S at p_{0}. Denote by κ the curvature of $x(t)$ at p_{0}. Then

$$
\begin{equation*}
\kappa N=\kappa_{n} N_{S}+\kappa_{g}\left(N_{S} \times T\right) . \tag{41}
\end{equation*}
$$

We call κ_{n} the normal curvature and κ_{g} the geodesic curvature of $x(t)$ at p_{0}.

- Properties.
- There holds

$$
\begin{equation*}
\kappa^{2}=\kappa_{n}^{2}+\kappa_{g}^{2} . \tag{42}
\end{equation*}
$$

- $\quad\left|\kappa_{n}\right|$ is the smallest possible curvature for all curves in S passing p_{0} with $x^{\prime}(t)$ parallel to the fixed direction $w \in T_{p}(S)$.
- Let $w \in T_{p} S$ be fixed. Let $x(t)$ be the intersection of S with the plane passing p_{0} spanned by w and $N_{S}{ }^{1}$. Then the curvature of $x(t)$ at p_{0} is $\left|\kappa_{n}\right|$.

The curvature of $x(t)$ at $p \neq p_{0}$ may not equal to $\left|\kappa_{n}(p)\right|$ anymore.
Exercise 8. Find an example illustrating this. (One possibility is cylinder).

- In general, we have

$$
\begin{equation*}
\kappa_{n}=\kappa \cos \psi, \quad \kappa_{g}= \pm \kappa \sin \psi \tag{43}
\end{equation*}
$$

where ψ is the angle between N_{S} and N.
In particular, if $x(t)$ is the intersection of S with a plane passing the line through p_{0} in the direction w, then the curvature of $x(t)$ at p_{0} is given by

$$
\begin{equation*}
\kappa=\frac{\left|\kappa_{n}\right|}{\cos \psi} \tag{44}
\end{equation*}
$$

[^0]where ψ is the angle between the plane and the unit normal N_{S} to the surface at p_{0}.

4. The second fundament form

4.1. Definition

First we summarize our three approaches.

1. The distance of a point $\sigma(u, v)$ to the tangent plane at $p_{0}=\sigma\left(u_{0}, v_{0}\right)$ is $\frac{1}{2}\left[\mathbb{L}\left(u-u_{0}\right)^{2}+\right.$ $\left.2 \mathbb{M}\left(u-u_{0}\right)\left(v-v_{0}\right)+\mathbb{N}\left(v-v_{0}\right)^{2}\right] ;$
2. The Weingarten map $\mathcal{W}=-D_{p_{0}} \mathcal{G}$ is given by

$$
\begin{equation*}
\mathcal{W}\left(\lambda \sigma_{u}+\mu \sigma_{v}\right)=\lambda\left(a_{11} \sigma_{u}+a_{12} \sigma_{v}\right)+\mu\left(a_{21} \sigma_{u}+a_{22} \sigma_{v}\right) \tag{45}
\end{equation*}
$$

where

$$
\left(\begin{array}{ll}
a_{11} & a_{21} \tag{46}\\
a_{12} & a_{22}
\end{array}\right)=\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}\left(\begin{array}{cc}
\mathbb{L} & \mathbb{M} \\
\mathbb{M} & \mathbb{N}
\end{array}\right)
$$

3. At p_{0}, if we fix a unit vector $w:=u_{1} \sigma_{u}+v_{1} \sigma_{v} \in T_{p_{0}} S$, and consider all curves $x(t)$ satisfying $x\left(t_{0}\right)=p_{0}, x^{\prime}\left(t_{0}\right) \| w$, then there holds

$$
\begin{equation*}
\kappa\left(t_{0}\right) \geqslant\left|\kappa_{n}(w)\right| \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa_{n}(w):=\mathbb{L} u_{1}^{2}+2 \mathbb{M} u_{1} v_{1}+\mathbb{N} v_{1} \tag{48}
\end{equation*}
$$

is called the normal curvature of S at p_{0} in the direction w. One particular curve among those satisfying $x\left(t_{0}\right)=p_{0}, x^{\prime}\left(t_{0}\right) \| w$ with $\kappa\left(t_{0}\right)=\left|\kappa_{n}(w)\right|$ is the curve obtained as the intersection between S and the plane passing p_{0} spanned by N_{S} and w.

We see that the three numbers (functions if we consider all $p \in S) \mathbb{L}, \mathbb{M}, \mathbb{N}$ plays a crucial role in determining how much a surface curves. This inspires the following definition.

DEFINITION 8. (The SECOND FUNDAMENTAL FORM) Let S be a surface and $p_{0} \in S$. Let σ be a surface patch of S covering $p_{0}: p_{0}=\sigma\left(u_{0}, v_{0}\right)$. Then the second fundamental form of S at p_{0}, denoted $\langle\langle\cdot,\rangle\rangle_{p_{0}, S}$ (with p, S omitted when no confusion may arise), is a bilinear form on $T_{p_{0}} S$ defined through

$$
\begin{equation*}
\mathbb{L}\left(u_{0}, v_{0}\right) \mathrm{d} u^{2}+2 \mathbb{M}\left(u_{0}, v_{0}\right) \mathrm{d} u \mathrm{~d} v+\mathbb{N}\left(u_{0}, v_{0}\right) \mathrm{d} v^{2} \tag{49}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbb{L}\left(u_{0}, v_{0}\right) & :=\sigma_{u u}\left(u_{0}, v_{0}\right) \cdot N\left(u_{0}, v_{0}\right)=-\sigma_{u} \cdot N_{u} \tag{50}\\
\mathbb{M}\left(u_{0}, v_{0}\right) & :=\sigma_{u v}\left(u_{0}, v_{0}\right) \cdot N\left(u_{0}, v_{0}\right)=-\sigma_{u} \cdot N_{v}=-\sigma_{v} \cdot N_{u}, \tag{51}\\
\mathbb{N}\left(u_{0}, v_{0}\right) & :=\sigma_{v v}\left(u_{0}, v_{0}\right) \cdot N\left(u_{0}, v_{0}\right)=-\sigma_{v} \cdot N_{v} . \tag{52}
\end{align*}
$$

Remark 9. If $w=w_{1} \sigma_{u}+w_{2} \sigma_{v}$ and $\tilde{w}=\tilde{w}_{1} \sigma_{u}+\tilde{w}_{2} \sigma_{v}$, then we have

$$
\begin{equation*}
\langle\langle w, \tilde{w}\rangle\rangle=\mathbb{L} w_{1} \tilde{w}_{1}+\mathbb{M}\left(w_{1} \tilde{w}_{2}+w_{2} \tilde{w}_{1}\right)+\mathbb{N} w_{2} \tilde{w}_{2} \tag{53}
\end{equation*}
$$

Remark 10. Let $x(t)=\sigma(u(t), v(t))$. We clearly have

$$
\begin{equation*}
\kappa_{n}=\mathbb{L}\left(u^{\prime}\right)^{2}+2 \mathbb{M} u^{\prime} v^{\prime}+\mathbb{N}\left(v^{\prime}\right)^{2}=\left\langle\left\langle x^{\prime}, x^{\prime}\right\rangle\right\rangle_{x(t), S} \tag{54}
\end{equation*}
$$

when $x(t)$ is parametrized by arc length. We can further prove the following general formula.

$$
\begin{equation*}
\kappa_{n}(p)=\frac{\langle\langle\cdot, \cdot\rangle\rangle_{p, S}}{\langle\cdot, \cdot\rangle_{p, S}} \tag{55}
\end{equation*}
$$

As a consequence, when $x(t)$ is not parametrized by arc length, we have

$$
\begin{equation*}
\kappa_{n}=\frac{\left\langle\left\langle x^{\prime}, x^{\prime}\right\rangle\right\rangle_{x(t), S}}{\left\langle x^{\prime}, x^{\prime}\right\rangle_{x(t), S}}=\frac{\mathbb{L}\left(u^{\prime}\right)^{2}+2 \mathbb{M} u^{\prime} v^{\prime}+\mathbb{N}\left(v^{\prime}\right)^{2}}{\mathbb{E}\left(u^{\prime}\right)^{2}+2 \mathbb{F} u^{\prime} v^{\prime}+\mathbb{G}\left(v^{\prime}\right)^{2}} \tag{56}
\end{equation*}
$$

Remark 11. From (56) we make the following crucial observation:
The normal curvature κ_{n} is totally determined by the surface and the tangent direction of the curve.

4.2. Properties

The second fundamental form is closely related to the first fundamental form.
Lemma 12. Let $w, \tilde{w} \in T_{p} S$. Then

$$
\begin{equation*}
\langle\langle w, \tilde{w}\rangle\rangle_{p, S}=\left\langle\mathcal{W}_{p, S}(w), \tilde{w}\right\rangle_{p, S}=\left\langle w, \mathcal{W}_{p, S}(\tilde{w})\right\rangle_{p, S} . \tag{57}
\end{equation*}
$$

Proof. Since $\langle\langle w, \tilde{w}\rangle\rangle_{p, S},\left\langle\mathcal{W}_{p, S}(w), \tilde{w}\right\rangle_{p, S}$, and $\left\langle w, \mathcal{W}_{p, S}(\tilde{w})\right\rangle_{p, S}$ are all bilinear, it suffices to prove the following cases: $w=\sigma_{u}, \tilde{w}=\sigma_{v} ; w=\tilde{w}=\sigma_{u} ; w=\tilde{w}=\sigma_{v} ; w=\sigma_{v}, \tilde{w}=\sigma_{u}$. We prove the first one and leave the other three as exercises.

We calculate

$$
\begin{equation*}
\left\langle\left\langle\sigma_{u}, \sigma_{v}\right\rangle\right\rangle_{p, S}=\mathbb{M} \tag{58}
\end{equation*}
$$

On the other hand, $\mathcal{W}_{p, S}\left(\sigma_{u}\right)=-N_{u}=a_{11} \sigma_{u}+a_{12} \sigma_{v}$ where

$$
\binom{a_{11}}{a_{12}}=\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \tag{59}\\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}\binom{\mathbb{L}}{\mathbb{M}}
$$

Consequently

$$
\begin{align*}
\left\langle\mathcal{W}_{p, S}\left(\sigma_{u}\right), \sigma_{v}\right\rangle_{p, S} & =a_{11}\left\langle\sigma_{u}, \sigma_{v}\right\rangle_{p, S}+a_{12}\left\langle\sigma_{v}, \sigma_{v}\right\rangle_{p, S} \\
& =a_{11} \mathbb{F}+a_{12} \mathbb{G} \\
& =\left(\begin{array}{lll}
\mathbb{F} & \mathbb{G}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}\binom{\mathbb{L}}{\mathbb{M}} \\
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{\mathbb{L}}{\mathbb{M}}=\mathbb{M} \tag{60}
\end{align*}
$$

Note that we have used

$$
\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \tag{61}\\
\mathbb{F} & \mathbb{G}
\end{array}\right)\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \Longrightarrow(\mathbb{F} \mathbb{G})\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

Differential Geometry of Curves \& Surfaces

The proof that $\left\langle\sigma_{u}, \mathcal{W}_{p, S}\left(\sigma_{v}\right)\right\rangle_{p, S}=\mathbb{M}$ is similar.

5. Examples

5.1. Calculation of the second fundamental form

Example 13. Consider the unit sphere $\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$. We calculate

$$
\begin{equation*}
\sigma_{u}=\left(1,0, \frac{-u}{\sqrt{1-u^{2}-v^{2}}}\right), \quad \sigma_{v}=\left(0,1, \frac{-v}{\sqrt{1-u^{2}-v^{2}}}\right) \tag{62}
\end{equation*}
$$

which gives

$$
\begin{equation*}
N(u, v)=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)=\sigma(u, v) . \tag{63}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathbb{L}(u, v) & =-\sigma_{u} \cdot N_{u}=\frac{v^{2}-1}{1-u^{2}-v^{2}}, \tag{64}\\
\mathbb{M}(u, v) & =-\sigma_{u} \cdot N_{v}=\frac{-u v}{1-u^{2}-v^{2}}, \tag{65}\\
\mathbb{N}(u, v) & =-\sigma_{v} \cdot N_{v}=\frac{u^{2}-1}{1-u^{2}-v^{2}} . \tag{66}
\end{align*}
$$

Example 14. Consider the unit sphere in spherical coordinates $(\cos u \cos v, \cos u \sin v, \sin u)$. We calculate

$$
\begin{equation*}
\sigma_{u}=(-\sin u \cos v,-\sin u \sin v, \cos u), \quad \sigma_{v}=(-\cos u \sin v, \cos u \cos v, 0) \tag{67}
\end{equation*}
$$

which gives

$$
\begin{equation*}
N(u, v)=(\cos u \cos v, \cos u \sin v, \sin u) . \tag{68}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathbb{L}(u, v) & =-1 \tag{69}\\
\mathbb{M}(u, v) & =0 \tag{70}\\
\mathbb{N}(u, v) & =-\cos ^{2} u \tag{71}
\end{align*}
$$

Example 15. Consider the surface patch $\sigma(u, v)=\left(u, v, u^{2}+v^{2}\right)$. We have

$$
\begin{gather*}
\sigma_{u}=(1,0,2 u), \quad \sigma_{v}=(0,1,2 v), \tag{72}\\
\sigma_{u u}=\sigma_{v v}=(0,0,2), \quad \sigma_{u v}=(0,0,0), \tag{73}
\end{gather*}
$$

and

$$
\begin{equation*}
N=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}=\frac{(-2 u,-2 v, 1)}{\sqrt{1+4 u^{2}+4 v^{2}}} \tag{74}
\end{equation*}
$$

Thus we have

$$
\begin{gather*}
\mathbb{L}=\sigma_{u u} \cdot N=\frac{2}{\sqrt{1+4 u^{2}+4 v^{2}}} \tag{75}\\
\mathbb{M}=\sigma_{u v} \cdot N=0 \tag{76}\\
\mathbb{N}=\sigma_{v v} \cdot N=\frac{2}{\sqrt{1+4 u^{2}+4 v^{2}}} \tag{77}
\end{gather*}
$$

So the second fundamental form is

$$
\begin{equation*}
\frac{2}{\sqrt{1+4 u^{2}+4 v^{2}}}\left(\mathrm{~d} u^{2}+\mathrm{d} v^{2}\right) . \tag{78}
\end{equation*}
$$

Exercise 9. Does this mean at any point $p \in S$, the normal curvature κ_{n} is a constant in every direction?
Example 16. Consider a ruled surface $\sigma(u, v)=\alpha(u)+v l(u)$ where $l(u)$ is of unit length. We calculate

$$
\begin{equation*}
\sigma_{u}=\alpha^{\prime}(u)+v l^{\prime}(u), \quad \sigma_{v}=l(u) . \tag{79}
\end{equation*}
$$

This gives

$$
\begin{equation*}
N(u, v)=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}=\frac{\alpha^{\prime}(u) \times l(u)+v l^{\prime}(u) \times l(u)}{\left\|\alpha^{\prime}(u) \times l(u)+v l^{\prime}(u) \times l(u)\right\|} . \tag{80}
\end{equation*}
$$

We further calculate

$$
\begin{equation*}
\sigma_{u u}=\alpha^{\prime \prime}(u)+v l^{\prime \prime}(u), \quad \sigma_{u v}=l^{\prime}(u), \quad \sigma_{v v}=0 \tag{81}
\end{equation*}
$$

Therefore if we set $A=\left\|\sigma_{u} \times \sigma_{v}\right\|$.

$$
\begin{align*}
\mathbb{L}(u, v) & =\sigma_{u u} \cdot N=A^{-1}\left(\alpha^{\prime \prime}+v l^{\prime \prime}\right) \cdot\left(\alpha^{\prime}(u) \times l(u)+v l^{\prime}(u) \times l(u)\right), \tag{82}\\
\mathbb{M}(u, v) & =\sigma_{u v} \cdot N=A^{-1} l^{\prime} \cdot\left(\alpha^{\prime} \times l\right), \tag{83}\\
\mathbb{N}(u, v) & =\sigma_{v v} \cdot N=0 \tag{84}
\end{align*}
$$

Recalling lecture 9 , we see that a ruled surface is developable if and only if $\mathbb{M}=0$.

5.2. Applications of the second fundamental form

Proposition 17. Let S be a surface whose second fundamental form is identically zero. Then S is part of a plane.

Proof. Let σ be a surface patch for S. Then by assumption we have $N_{u} \cdot \sigma_{u}=N_{u} \cdot \sigma_{v}=0$. As N is the unit normal, naturally $N_{u} \cdot N=0$. Consequently $N_{u}=0$ as $\left\{\sigma_{u}, \sigma_{v}, N\right\}$ form a basis of \mathbb{R}^{3}. Similarly $N_{v}=0$. Thus N is a constant vector and therefore σ is part of a plane.

Proposition 18. Let S be a suface whose second fundamental form at every $p \in S$ is a nonzero scalar multiple of its first fundamental form at p. Then S is part of a sphere.

Exercise 10. Prove that if S is part of a sphere, then its second fundamental form is a non-zero scalar multiple of its first fundamental form.

Proof. Let $\sigma(u, v)$ be a surface patch for S. Then there holds

$$
\begin{equation*}
\mathbb{L}(u, v)=c(u, v) \mathbb{E}(u, v), \quad \mathbb{M}(u, v)=c(u, v) \mathbb{F}(u, v), \quad \mathbb{N}(u, v)=c(u, v) \mathbb{G}(u, v) \tag{85}
\end{equation*}
$$

for every (u, v). This leads to

$$
\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \tag{86}\\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}\left(\begin{array}{cc}
\mathbb{L} & \mathbb{M} \\
\mathbb{M} & \mathbb{N}
\end{array}\right)=c(u, v)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Differential Geometry of Curves \& Surfaces

As a consequence, we have

$$
\begin{equation*}
N_{u}+c(u, v) \sigma_{u}=0, \quad N_{v}+c(u, v) \sigma_{v}=0 \tag{87}
\end{equation*}
$$

at every (u, v). Taking v, u derivatives of the two equations respectively, we have

$$
\begin{equation*}
N_{u v}+c_{v} \sigma_{u}+c \sigma_{u v}=0=N_{v u}+c_{u} \sigma_{v}+c \sigma_{v u} \Longrightarrow c_{v} \sigma_{u}=c_{u} \sigma_{v} . \tag{88}
\end{equation*}
$$

As σ_{u}, σ_{v} form a basis of $T_{p} S$, there must hold $c_{v}=c_{u}=0$, that is $c(u, v)=c$ is a constant.
Now (87) becomes

$$
\begin{equation*}
(N+c \sigma)_{u}=(N+c \sigma)_{v}=0 \Longrightarrow N+c \sigma=r_{0} \tag{89}
\end{equation*}
$$

is a constant. In other words, we have

$$
\begin{equation*}
\sigma+c^{-1} N=c^{-1} r_{0} \tag{90}
\end{equation*}
$$

is a constant which means σ is part of the sphere centered at $c^{-1} r_{0}$ and with radius $|c|^{-1}$.

[^0]: 1. Such $x(t)$ is called a "normal section"
