Math 348 Fall 2016

LECTURE 6: DIFFERENTIAL GEOMETRY OF CURVES 1

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we study how a curve curves. For simplicity we assume
the curve is already in arc length parameter. We will show that the curving

of a general curve can be characterized by two numbers, the curvature and
the torsion.

The required textbook sections are: §2.1.
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1. Curvature

Curvature measures how quickly a curve turns, or more precisely how quickly
the unit tangent vector turns.

1.1. The definition of the curvature

e Consider a curve z(s): (a, 3) — R3. Then the unit tangent vector of z(s) is given by
x'(s). Consequently, how quickly z’(s) turns can be characterized by the number

K(s) = |lz"(s)]| (1)
which call the curvature of the curve.

As ||z'(s)|| =1, we have x"(s)Lz’(s). This leads to the following definition.

DEFINITION 1. Let x(s) be a curve parametrized by arc length. Then its curvature is
defined as k(s):=||z"(s)||. We further denote by N(s) the unit vector x"(s)/||z"(s)||
and call it the normal vector at s. We also denote the unit tangent vector z'(s) by T'(s).

1.2. Alternative characterization of the curvature (optional)

e Consider a curve z(s): (a, 3) — R3. Let p = x(sq) for some sy € (o, 5). We try to
understand how quickly z(s) turns aways from the tangent line at x(sp).

The equation for the tangent line is x(sg) + ¢ x'(so).

The distance from a point z(s) to the tangent line is

d(s) := | (x(s) = x(s0)) x 2'(s0) (4)

Note that here we have used the fact that z'(sp) is a unit vector.

Now recall Taylor expansion:

(s) — 2(s0) = 2/(s0) (5 — 50) + % 2(s0) (5 — 50)% + R(s, 50) (5)
IR(s;s0)ll __

where lim,_., G 0.
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e Substituting (5) into (4), we see that

(s — s0

i(5) = | S22 ) (50 + s, ) )

and consequently
lim 8 12" (s0) % z'(s0)|| (7)
s—0 (8 —50)2/2

Exercise 1. Prove (7).

e Thus we see that the quantity ||z”(so) X z'(s)|| measures how the curve “curves” at the
point z(sg). We will denote it by k(sg) and call it the curvature of the curve at x(so).

Exercise 2. Prove that ||2"(s0) X z'(s0)|| = ||="(s0)|| = £(s0)-
Exercise 3. (7) can be derived slightly differently as follows.
i. Find T such that x(s) — [x(so) + Tx'(s0)] Lz’ (s0)-
ii. Then d(s) = ||z(s) — [z(s0) + Tx(s0)]]|-

d(s)

iii. Calculate the limit lim T

1.3. Examples

Example 2. For the unit circle, the curvature is constantly 1. For a circle with radius R,
the curvature is constantly 1/R.

— (L 2 sint. L £ — L
Example 3. (SHIFRIN2016) Let x(t)-(\/gcosﬂ—ﬁsmt,\/gcost,\/gcost \/Esmt>.We

calculate

e Tangent vector:

z'(t)= (—%sint%—icost, —Lsint, —Lsint —Lcost> (8)

V2 V3 V3 V2
e |z'(t)]| =1 so we are already in arc length parametrization.

e We have ||2"(t)|| =1.

So the curvature of this curve is constantly 1.

Example 4. (SHIFRIN2016) Let 2(t) = (¢!, e, v/2¢). We calculate
e Tangent vector:
z'(t)= (€', —e*,V2) (9)
and therefore
o |2/(t)]|=€+e.

e To re-write it into arc length parametrization, we need to find a new parameter s
such that s =S5(t) with

S'(t)y=el+et (10)
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as s would be the arc length parameter:
") = [l"(s) S"() ]| = [5"(2)]. (11)
We see that S(t)=¢e' —e™.

e Solve t as a function of s:

et_s—l—\/52—|—4

. (12)

e Thus z(s) is given by

(s+\/52—|—4 \/524—4—5’\/5111(54— 32+4>>' (13)

2 ’ 2 2

e We calculate

1 S S 1 2
2(s)=| =+ , -, . 14
(s) (2 2Vs2+4 2v/s2+4 2 52—|—4> (14)
To make sure our calculation is correct, we check
lz'(s)[] = 1. (15)

e Finally we calculate
z"(s) = (8 (s24+4)73/2 8 (s +4)73/2, —\/25 (s> + 4)_3/2) (16)
which gives
V2 Vs +64

r(s) = [lz"(s)l| = N

(17)

Remark 5. We see that with only (2), the calculation of curvatures could often be awkward
due to the difficulty of explicitly writing down arc length parametrization. Thus we need a
formula for curvature that works for general, not just arc length, parametrization. We will
derive that in the next lecture.

PROPOSITION 6. A plane curve with constant curvature is part of a circle/line.

Proof. Let z(s) be such that k(s) is constant.
e x=0. In this case we have #(s) =0 which means # is constant.
o x>0. Let y(s):=x(s) + k' N(s). Then we calculate
y'(s) = 2'(s)+rIN'(s).
Clearly we have y'(s)- N(s)=0.
On the other hand, using z'(s) - N(s) =0 we see that
z'(s)-n'(s)=—2"(s)- N(s) = —k. (18)
Thus
y'(s)-'(s) =1+ k7" (=) =0, (19)
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Consequently y'(s)L{z'(s), N(s)}. As z(s) is a plane curve, 3'(s) belongs to the
plane spanned by z'(s) and N(s). Consequently y'(s) =0 and therefore y(s) = yo is
a constant. Now we see that

l2(s) = yoll = [| =" N(s)[| = &~ (20)

is a constant which means z(s) is part of a circle. O

Remark 7. Proposition 6 ceases to hold if we drop the “plane curve” assumption.
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