
Lecture 5: Surfaces II

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we give mathematical de�nition of surfaces as a compatible
collection of surface patches. We also de�ne the tangent plane and normal
vectors of surfaces.

The required textbook sections are �4.2, �4.3, �4.4.

The examples in this note are mostly di�erent from examples in the textbook. Please
read the textbook carefully and try your hands on the exercises. During this please don't
hesitate to contact me if you have any questions.
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1. Tangent Planes and Normal Vectors
At every point on a smooth surface, there is a unique plane �touching� the
surface, called the �tangent plane� at the point. The vector at the point that
is normal to the tangent point is called the �normal vector� there. We will
derive the formulas for the tangent plane as well as the normal vector.

1.1. Tangent planes
� Tangent vector and tangent plane.

Definition 1. (Definition 4.2.1 of Textbook) A surface patch �: U 7!R3 is
called regular if it is smooth and the vectors �u and �v are linearly independent at all
points (u; v)2U.

In the following we will always assume the surface under study to have an atlas
of regular surface patches. In fact, most of the times we will just focus on one single
surface patch.

Definition 2. (Definition 4.4.1 of Textbook) A tangent vector to a surface S
at point p2S is a tangent vector at p of a curve in S passing through p.

When we consider all the curves in S passing through p, we obtain a collection of
tangent vectors. This collection (together with the zero vector) forms a two-dimen-
sional linear vector space called �tangent plane� of S at p. Denoted TpS.

Exercise 1. Prove that if u; v are tangent vectors at p and a; b are arbitrary real numbers, then
au+ b v is also a tangent vector at p .

Proposition 3. (Proposition 4.4.2) Let �: U 7! R3 be a patch of a surface S
containing a point p2S, and let (u; v) be coordinates in U. The tangent space to S at
p is the vector subspace of R3 spanned by the vectors �u and �v (the derivatives are
evaluated at the point (u0; v0)2U such that �(u0; v0)= p).

Remark 4. In other words, we can represent the collection of tangent vectors at p
as fa�u+ b �v: a; b2Rg.

Let U �R2 and �:U 7!R3 be a surface patch of a surface S. Let p=�(u0; v0) for
some (u0; v0)2U . Then the tangent plane TpS=fa �u(u0; v0)+ b �v(u0; v0):a; b2Rg:

� Examples.

Example 5. (Graph) Let U �R2 and f : U 7!R be a smooth function. Then its
graph fx3= f(x1; x2)g is a surface. It is given by one surface patch (u; v; f(u; v)). As
a consequence, we have

�u=(1; 0; fu); �v=(0; 1; fv); (1)

and the tangent plane TpS at p=(u0; v0) is given by

fa (1; 0; fu)+ b (0; 1; fv): a; b2Rg: (2)

1.2. Normal vectors and orientation
� Normal vector.
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Definition 6. (Normal vector) A normal vector at p 2 S is a vector that is
perpendicular to all tangent vectors at p. A unit normal vector at p 2 S is a normal
vector at p with unit norm.

Let U �R2 and �:U 7!R3 be a surface patch of a surface S. Let p=�(u0; v0) for
some (u0; v0)2U . Then the normal vectors at p are given by c �u��v where c2R.
In particular, the unit normal vectors are given by

� �u��v
k�u��vk

: (3)

� Orientation.

� Informal definition. A surface S is orientable if and only if there is a
continuous function N :S 7!R3 such that at every p2S, N(p) is a unit normal
vector of S at p .

� There are surfaces that are not orientable.

� Every regular surface patch is orientable.

2. Surface Area
The de�nition of surface area is subtle. However for the regular surfaces

considered in 348, there is a simple formula.

2.1. How to calculate surface area

u
v

x
y

z

(u; v)

(u+ �u; v+ �v)

�
u
v

�
!!!!!!!!!!�

0@ x
y
z

1A

��(u; v)+�u �u

��(u; v)+�v �v

�(u; v)

Figure 1. Stretching and twisting of of in�nitesimal rectangles.

The shaded rectangle in the (u;v)-plane, with area �u � �v, is �stretched� by the mapping
r to the shaded curvilinear parallelogram in the (x; y; z)-space. The sides of this paral-
lelogram are approximately ru �u and rv �v, giving its area to be about k�u� �vk �u � �v.
Summing the areas of all such curvilinear parallelograms up we reach the integral formulaZ

U

k�u� �vk dudv: (4)

Intuitions about the surface area formula.
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Area of a surface patch: Z
U

k�u��vkdudv (5)

In particular, when the surface patch is given by a graph z= �(x; y) on U �R2. Then

S=

Z
U

1+ �x
2+ �y

2
p

dx dy: (6)

Example 7. Find the area of the part of z= x y that is inside x2+ y2=1.

Solution. We calculate

S=
Z
x2+y261

1+ zx2+ zy2
q

d(x; y)= 2 �
3
¡
2 2
p
¡ 1
�
: (7)

Example 8. Find the surface area of the sphere x2+ y2+ z2=R2.

Solution. We use the parametrization

�(�;  )=

0@ R cos� cos 
R sin� cos 
R sin 

1A; U =
n
(�;  )j 0<�< 2 �;¡�

2
<  <

�
2

o
: (8)

Exercise 2. Note that as shown on page 72 of the textbook, one �slit� on the sphere is not covered.
Convince yourself that this is not a problem for the purpose of calculating surface area. Prove that this
is not a problem if you have learned the theory of Riemann integration on surfaces.

Then calculate

�u=

0@ ¡R sin� cos 
R cos� cos 

0

1A; �v=

0@ ¡R cos� sin 
¡R sin� sin 

R cos 

1A: (9)

This gives

S=
Z
D

R2 cos d(�;  )=4 �R2: (10)

2.2. The counterexample of Schwartz (optional)

�The example of Schwarz, ... , was the starting point of an extensive and fascinating literature. Still,
we do not possess as yet a satisfactory theory of the area of surfaces, ...�

�� Tibor Rado, 19431

� Gelbaum, B. R. and Olmsted, J. M. H., Counterexamples in Analysis , Chapter 11, Example 7.

Let

S= f(x; y; z)jx2+ y2=1; 06 z6 1g: (11)

Let m2N. De�ne 2m+1 circles:

Ck;m :=S \
�
(x; y; z)j z= k

2m

�
; k=0; 1; 2; :::; 2m: (12)

1. Tibor Rado, What is the Area of a Surface? , The American Mathematical Monthly, Vol. 50, No. 3, Mar., 1943, pp. 139 - 141.
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Now let n2N. Pick on each Ck;m n points:

Pk;m;j :=

8>>><>>>:
�
cos

2 j �
n

; sin
2 j �
n

;
k
2m

�
k even�

cos
(2 j+1)�

n
; sin

(2 j+1) �
n

;
k
2m

�
k odd

; j=0; 1; :::; n¡ 1: (13)

Connecting this points in a natural manner we obtain 4m n congruent space triangles. It
can be calculated that the area of each triangle is

sin
�
�
n

��
1

4m2
+
�
1¡ cos

�
�
n

��
2
�
1/2

: (14)

Exercise 3. Prove the above formula.

Thus the area of the polyhedron inscribed in the cylinder is

Amn := 2�
sin(�/n)
�/n

�
1+4m2

�
1¡ cos

�
n

�
2
�
1/2
: (15)

Exercise 4. Prove that, as m;n!1,

a) the diameters of the triangles ¡!0;

b) The limit of Amn depends on how m;n¡!1. Furthermore for any s>2 � (including 1), there
is a strictly increasing function M :N 7!N such that

lim
n!1

AM(n);n= s: (16)

Note that the area of the cylinder is 2�.

Remark 9. See http://www.cut-the-knot.org/Outline/Calculus/SchwarzLantern.shtml for
a visualization of the construction.

Remark 10. (From (Lord) ) In 1868 J. A. Serret2 suggested the �obvious� generalization
of the natural method of �nding arc length to calculation of surface area:

�Given a portion of a curved surface bounded by a curve C, we call the area of this surface
the limit S towards which the area of an inscribed polyhedral surface tends, where the inscribed
polyhedral surface is formed by triangular faces and is bounded by the polygonal curve G,
which limits the curve C�

�One must show that the limit S exists and that it is independent of the way in which the
faces of the inscribed surface decreases.�

The problem with this approach was �rst realized by H. A. Schwarz3, who wrote to
Italian mathematician Gennochi about this in 1880. Later in 1882 Gennochi's student Peano
annouced the same result in a course he taught. Around the same time Schwarz wrote to
Hermite about his example. Hermite published Schwarz's letter in his course notes, which
was published later than that of Peano's. Consequently there are disputes about priority.

2. of Frenet-Serret frame in Di�erential Geometry.

3. Gesammelte Mathematische Abhandlungen, Vol. 2, p. 309. Berlin, Julius Springer, 1890.
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3. Di�erentiation of functions between surfaces
The transition from multivariable calculus to classical di�erential geometry
is ful�lled when we start to di�erentiate functions mapping one surface to
another. Such di�erentiation is de�ned through the help of surface patches.
The di�erentials are linear maps between tangent planes.

� Consider two surfaces S;S 0. We can consider a function f from S to S 0, that is given
x2S, we have f(x)2S 0 de�ned.4

� In di�erential geometry, we study derivatives of such maps.

� How to di�erentiate a function that is de�ned on a curved surface instead of the �at
space? Flatten.

� Let f : S 7! S~ be a function from one surface S to another surface S~. Let p 2 S. We
would like to �di�erentiate� f at p. Remember that di�erentiation is local, that is we
only need those values of f at x around p. Thus it su�ces to ��atten� S around p.
More speci�cally, we �pull back� S into R2 through a surface patch.

� The procedure.

i. Let �:U 7!R3 be a surface patch of S covering p: �(u0; v0)= p. By de�nition
of surface patches, we see that f � �:U 7!R3 is well-de�ned.

ii. Let �~: V 7! R3 be a surface patch of S 0 covering f(p). Then we see that
F := (�~)¡1 � f � �:U 7!V is a well-de�ned5 function from U to V .

iii. Let x(t) :=�(u(t);v(t)) be a curve on S with x(t0)= p. Let (u~(t); v~(t))=F (u(t);
v(t)). Then the chain rule gives�

u~0

v~0

�
=DF (u; v) �

�
u0

v 0

�
(17)

where keep in mind that DF is a matrix.

iv. On the other hand, if we set x~(t) := �~(u~(t); v~(t)) to be the curve in S~ x(t) is
mapped to by f , we have

x0(t0)=u0(t0)�u(p)+ v 0(t0)�v(p) (18)

and

x~0(t0)= u~0(t0)�~u(f(p))+ v~0(t0) �~v(f(p)): (19)

Thus (u0; v 0) and (u~0; v~0) are coordinates of the tangent vectors x0(t0) and x~0(t0),
and they are related by (17).

Remark 11. In fact f � � is also a surface patch on S~. However in practice usually
an atlas of surface patches has already been given for S~ and of course those patches
are usually di�erent from f ��.

4. For example, the correspondence between a map and the real locations is such a function.

5. There is a minor technical issue here. But we ignore it for now.
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The di�erential of f : S 7! S~ at p 2 S, denoted Dpf , is a linear map between the tangent
planes TpS and Tf(p)S~. If � and �~ are two surface patches on S;S~ respectively, containing
p; f(p) respectively, then the matrix representation of Dpf is the 2� 2 Jacobian matrix
DF (u0; v0) where F := (�~)¡1 � f � �, and �(u0; v0)= p. In other words, we have

Dpf(a �u+ b �v)= a~�~u+ b~�~v (20)

where all the �u; �v are evaluated at p and �~u; �~v at f(p), and 
a~

b~

!
=DF (u0; v0) �

�
a
b

�
: (21)

Example 12. (Stereographic projection) Let S~ be the sphere x12+x2
2+(x3¡ 1)2=1

taking away the north pole (0;0;2). Let S be the plane x3=0. f :S 7!S~ be such that (0;0;2);
(u; v; 0); f(u; v; 0) lie on the same straight line. Then we have

f(u; v; 0)=

�
4u

u2+ v2+4
;

4 v
u2+ v2+4

;
2 (u2+ v2)
u2+ v2+4

�
: (22)

Let p=(0; 0; 0). We will calculate Dpf .

i. Pick � covering p. We take �:U =R2 7!R3 de�ned as �(u; v)= (u; v; 0);

ii. Pick �~ covering f(p) and calculate (�~)¡1. We calculate f(p)= (0; 0; 0). Thus we can
take

�~:U~ = fu~2+ v~2< 1g 7!R3; �~(u~; v~)=
¡
u~; v~; 1¡ 1¡u~2¡ v~2

p �
: (23)

Thus (�~)¡1(x; y; z)= (x; y).

iii. Formulate F =(�~)¡1 � f ��. We have

F =(�~)¡1 � f :F (u; v)=
�

4u
u2+ v2+4

;
4 v

u2+ v2+4

�
: (24)

iv. Calculate DF (u0; v0) for �(u0; v0) = p. We have �(0; 0) = (0; 0; 0) = p and therefore
calculate

DF (0; 0)=

�
1 0
0 1

�
: (25)

The conclusion from the above calculation is that, if v= a �u+ b �v is a vector in TpS, then
Dpf(v)2Tf(p)S~ is given by a �~u+ b �~v.

Exercise 5. Calculate DF at a di�erent point.
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