
Lecture 2: Review

Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only.
It should not be relied on when preparing for exams.

In this lecture we review the prerequisites: Multivariable calculus, linear
algebra, and basics of di�erential equations. We will not be able to cover
everything that will be needed through the semester. We will only cover the
basics, and leave some more sophisticated topics such as inverse/implicit
function theorem for later lectures to explain.

Warning. In this lecture note we omit many technical assumptions such as
di�erentiability/integrability of functions when stating formulas and theo-
rems, because in 348 they are almost always satis�ed. However please do not
quote the statements here for your other courses.
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1. Multivariable calculus

Multivariable calculus studies functions from Rm to Rn with either m> 1 or
n>1. In 348 we focus on functions fromR toR2/R3 (curves) and fromR2 to
R3 (surfaces). In the following we review concepts, theorems, and techniques
that are important to us.

1.1. The Euclidean space Rn

� Rn is the mathematical representation of a n-dimensional �at space through setting
up n orthogonal �axes�. Along each axes, we de�ne a unit vector: e1; :::;en. Then each
point in the space is identi�ed by an n-tuple (x1; :::; xn).

It is important to realize that Rn can be interpreted in two ways, in the context
of describing a moving particle (along a curve, on a surface, etc.).

� Rn as possible locations. At each moment, the location of the particle is iden-
ti�ed with a point in Rn: At time t, the particle is at (x1; :::; xn).

� Rn as possible velocities. To completely describe the motion of this particle,
we also need to know its velocity. The velocity is also described by an n-tuple
(v1; :::; vn). Such n-tuples are called �vectors�.

Thus at each point x in the �location� space Rn, we �overlay� a �velocity� space whose
mathematical representation is also Rn. This overlay will later be called the �tangent
space� of the location space at x. Such distinction seems a bit silly now, but will
be very useful later when we �curve� the location space. The key idea of di�erential
geometry is that when the location space is curved, the velocity space stays �at. To
visualize, think of a 2-dimensional surface as the curved locations space, then the
velocity space at a location is the tangent plane of the surface there.

1.2. Operations on Rn

� When Rn is interpreted as the overlaying �velocity� space, the most important con-
cepts are

� Norm. When v= (v1; :::; vn) describes a velocity vector, its speed is given by
its norm:

kvk := v1
2+ ���+ vn

2
p

: (1)

� Inner product. The inner product of two vectors u = (u1; :::; un) and
v=(v1; :::; vn) is de�ned as

u � v :=u1 v1+ ���+ un vn: (2)

The importance of inner product comes from the following property:

Proposition 1. Let � be the angle between two vectors u = (u1; :::; un) and
v=(v1; :::; vn), then

cos �=
u � v

kuk kvk : (3)
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Exercise 1. Obviously � is not uniquely de�ned. What does this not matter?

In particular, u �v=0()u?v, that is u is perpendicular(orthogonal) to v.

� Cross product/vector product. Let u=(u1;u2;u3); v=(v1; v2; v3) be two
vectors in R3. Their cross product (also called �vector product�) is de�ned as

u� v := (u2 v3¡u3 v2; u3 v1¡u1 v3; u1 v2¡u2 v1): (4)

Exercise 2. Prove the following.

i. u� v= v�u;
ii. Let a; b2R be arbitrary. Then

(a u+ bw)� v= a u� v+ bw� v: (5)

iii. u� v=0 if and only if u and v are �parallel�.

iv. (u� v) �u=0; (u� v) � v=0.

v. (u� v) �w=(v�w) �u=(w�u) � v.

Also note that

ku� vk= kuk kvk sin � (6)

where � is the angle between u; v.

� When Rn is interpreted as the underlying �location� space, the most important con-
cepts are

� Distance. Let x = (x1; :::; xn) and y = (y1; :::; yn). For now, the only
distance we know is the distance along straight lines, given by the Pythagorean
theorem:

d(x; y)= (x1¡ y1)
2+ ���+(xn¡ yn)

2
p

: (7)

Remark 2. We see that d(x; y)=kx¡ yk. However this will cease to be true
when the location space is curved. One important theme in 348 is to generalize
(7) for curved spaces.

� Area. The foundation of the de�nition of area is the following agreement:

i. The unit square has area 1.

ii. The area of a union of disjoint regions is the sum of the areas of these
regions.

iii. Moving a region around �rigidly� (that is not changing the distance of
any pair of two points in the region) does not change its area.

From these one could develop the whole theory of integration in two-variable
calculus.

Example 3. Let x= (x1; x2; x3); y = (y1; y2; y3) in R3. Then the area of the
parallelogram (0;0;0)¡ (x1; x2; x3)¡ (x1+ y1; x2+ y2; x3+ y3)¡ (y1; y2; y3)¡ (0;
0; 0) is given by

kx� yk := k(x2 y3¡x3 y2; x3 y1¡x1 y3; x1 y2¡x2 y1)k (8)
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� Volume. The foundation of the de�nition of volume is the following agree-
ment:

i. The unit cube has volume 1.

ii. The volume of a union of disjoint regions is the sum of the volumes of
these regions.

iii. Moving a region around �rigidly� (that is not changing the distance of
any pair of two points in the region) does not change its volume.

With these agreement one could develop the whole theory of integration in
three-variable calculus.

Example 4. Let x=(x1; x2; x3); y=(y1; y2; y3); z=(z1; z2; z3) in R3. Then the
volume of the parallelopiped spanned by these three vectors is given by

V = j(x� y) � z j: (9)

Exercise 3. Check your old textbook and explain what the sign of (x� y) � z means.

1.3. Functions from Rm to Rn

Let 
�Rm be a region in Rm. A function f : 
 7!Rn is a correspondence between points in

 and points in Rn satisfying the following: Each x2
 corresponds to exactly one y 2Rn.
One classi�es functions into two categories: linear and nonlinear. In 348, we will see that
linear functions are often considered in the context of �velocity� spaces.

� Linear functions. A function f : 
 7!Rn is linear if and only if for every a; b2R
and every x; y 2
, one has

f(a x+ b y)= a f(x)+ b f(y): (10)

Exercise 4. Prove that if f is linear then f(0)=0.

Exercise 5. Let f :R 7!R be linear. Prove that there is a constant c2R such that f(x)= c x.

Notation. We often denote a linear function by a capital letter such as T.1

Proposition 5. Let T : 
 �Rm 7!Rn be linear. Then there are m n numbers a11;
a12; :::; a1m; a21; :::; an1; :::; anm2R, such that for every v 2
, the following holds for
w=T (v):

w1 = a11v1+ ���+ a1m vm (11)
��� ��� ���

wn = an1 v1+ ���+ anm vm: (12)

In other words, we have T (v)=Av where A is the matrix
0@ a11 ��� a1m

��� ��� ���
an1 ��� anm

1A.
Exercise 6. Prove Proposition 5.

1. First letter of �transformation�.
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� Nonlinear functions. Any function that is not linear. In calculus, nonlinear func-
tions are studies through their derivatives.

� Bilinear forms. A bilinear form is a special type of nonlinear function: B:R2n 7!R,
satisfying for every a; b2R and every u; v;w2Rn,

B(au+ bw; v)= aB(u; v)+ bB(w; v); (13)

B(u; aw+ b v)= aB(u; w)+ bB(u; v): (14)

Exercise 7. Prove that the inner product: f(u; v) :=u � v is a bilinear form.

Exercise 8. Prove or disprove: The area A(u; v) := ku� vk is a bilinear form.

Proposition 6. Let B: R2n 7! R be a bilinear form. Then there are n2 numbers
a11; :::; a1n; a21; :::; an1; :::; ann such that

B(u; v)=
X
i=1

n X
j=1

n

ui aij vj: (15)

Exercise 9. Let A :=
0@ a11 ��� a1n

��� ��� ���
an1 ��� ann

1A. Prove that B(u; v) = u � A v = (A u) � v where � denotes

inner product.

1.4. Taking derivatives of functions from Rm to Rn

� Differentiability.

Definition 7. A function f : 
�Rm 7!Rn is di�erentiable at x 2 
 if and only if
the following holds: There is a linear function T :Rm 7!Rn such that

lim
v¡!0

kf(x+ v)¡ f(x)¡T (v)k
kvk =0: (16)

The linear function T is called the �di�erential� of f at x and will be denoted Df(x).

Remark 8. Note that f is de�ned on 
 which belongs to the �location� space Rm,
and f takes value in another �location� space Rn; while T is de�ned on Rm which
is the �velocity� overlay space on top of 
, centered at x, and takes value in another
�velocity space� centered at f(x).

By Proposition 5 there is a matrix A such that T (v) = A v for all v 2 Rm. The
numbers aij in the matrix A is given by the partial derivatives of f at x:

Definition 9. Let f : 
�Rm 7!R. Its j-th partial derivative at x=(x1; :::; xm)2

is de�ned as

@f
@xj

(x) :=
df(x1; :::; xj¡1; t; xj+1; :::; xm)

dt
jt=xj : (17)

Exercise 10. Prove that aij=
@fi
@xj

(x).
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Note. This matrix (representation of the di�erential of f) is called the Jacobian
matrix of f at x.

Exercise 11. Let f : Rm 7! Rn be di�erentiable everywhere. Prove that if Df(x) = 0 for all
x2Rm, then f is a constant.

� Chain Rule. Let f(x):Rm 7!Rn and g(y):Rn 7!Rk. Then the composite function
g � f :Rm 7!Rk is de�ned as

(g � f)(x)= g(f(x)): (18)

The partial derivatives of g � f can be calculated through

@(g � f)i
@xj

=
X
k=1

n
@gi
@yk

(f(x))
@fk(x)
@xj

: (19)

Exercise 12. Find a calculus textbook and work on a few chain rule problems.

� Higher order derivatives. We consider the simplest case f : 
 � Rm 7! R. At
every x 2
, it has a di�erential which is a linear function Df(x):Rm 7!R. As this
linear function can be represented by a 1�m matrix, it can also be identi�ed with
an m-vector. Thus at each point x2
, we have a vector g(x)2Rm. Di�erentiating
this function g we obtain the second order derivative of f at x, denoted D2f(x).

Exercise 13. Prove or disprove: Let x2
 be arbitrary. The second order derivative of f can
be seen as a bilinear form on R2m=Rm�Rm, where each Rm is the �velocity� space at x.

Exercise 14. Prove that the matrix representing the bilinear form is given by

aij=
@2f

@xi@xj
= @

@xi

�
@f

@xj

�
: (20)

As we can see here, for functions between Rm and Rn with m or n > 1, higher
order derivatives get more and more complicated. However there is one exception.

Exercise 15. What happens if we take successive derivatives of a function f :R 7!Rn?

Note. The matrix representation of D2f(x) is called the Hessian matrix of f at x.

Exercise 16. What are the Jacobian and Hessian matrices for f :R 7!R?

� Taylor expansion.
Let f : 
�Rm 7!R. Then there holds

f(x+ v)= f(x)+Df(x)(v)+
1
2
D2f(x)(v; v)+R (21)

where limv!0
kRk
kvk2 =0. (21) is the Taylor expansion of f at x to second order.

Exercise 17. Prove the following.

Df(x)(v)=
X
i=1

m
@f(x)
@xi

vi; D2f(x)(v; v)=
X
i=1

m X
j=1

m
@2f(x)
@xi@xj

vi vj: (22)

� Examples.
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Example 10. Let f(x; y) :=exy. We calculate its Taylor expansion at (0;0) to second
order. We have

f(0; 0) = e0=1;
@f
@x

= y exy=) @f
@x
(0; 0) = 0;

@f
@y

= x exy=) @f
@y
(0; 0) = 0;

@2f
@x2

= y2 exy=) @2f
@x2

(0; 0) = 0;

@2f
@x@y

=
@2f
@y@x

= exy=) @2f
@x@y

(0; 0) = 1;

@2f
@y2

= x2 exy=) @2f
@y2

(0; 0) = 0:

Therefore the expansion reads

f(u; v) = f(0; 0)+Df(0; 0)(u; v)+
1
2
D2f(0; 0)(u; v)+R

= 1+ u v+R: (23)

2. Linear algebra

The fundamental idea of calculus is to study functions through their �rst and
second (or higher) derivatives. We have seen that such derivatives can be
viewed as linear transformations between Rm and Rn. Therefore to under-
stand them we need linear algebra.

2.1. Operations on matrices

� Determinant.

� Determinant is de�ned for square matrices.

� 2� 2. Let A :=
�
a11 a12
a21 a22

�
. Then

detA := a11a22¡ a12a21: (24)

Exercise 18. Let u; v; x; y 2R3. Prove that

(u� v) � (x� y)= det
�
u �x v �x
u � y v � y

�
: (25)

� 3� 3. Let A :=
0@ a11 a12 a13

a21 a22 a23
a31 a32 a33

1A. Then
det A := a11 a22 a33 + a12 a23 a31 + a21 a32 a13 ¡ a13 a22 a31 ¡ a12 a21 a33 ¡
a23a32a11: (26)

Exercise 19. Let u; v; w2R3. Let A :=
0@ u1 v1 w1
u2 v2 w2
u3 v3 w3

1A. Prove that detA=(u� v) �w.
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� A square matrix A is invertible, that is there is a matrix B such that AB =

BA= I =

0@ 1
���

1

1A if and only if detA=/ 0.

� Eigenvalues and eigenvectors.

� In most cases the matrix A under study is the mathematical representation of
a linear function T .

� We could try to understand an n� n matrix through its n2 entries. However
a more e�cient way is through its eigenvalues/eigenvectors.

� The eigenvalues of an n�n matrix A are the solutions to the equation

det(� I ¡A)=0: (27)

The eigenvectors corresponding to an eigenvalue �0 are those vectors satisfying

(� I ¡A) v=0()Av=� v: (28)

� In many situations, one could choose n linearly independent eigenvectors
fv1; :::; vng to form a �coordinate system�, that is every vector u 2 Rn can
be uniquely represented as u = a1 v1 + ��� + an vn where a1; :::; an 2 R.
Then the linear function T can be very easily understood:

T (u)=�1 a1 v1+ ���+�n an vn: (29)

� The most useful situation for us is when A is symmetric: aij = aji for all i;
j=1; 2; :::; n. In this case we can choose n eigenvectors v1; :::; vn satisfying

i. vi?vj, for all i=/ j;
ii. kvik=1 for all i=1; 2; :::; n.

2.2. Linear dependence and independence

� Linear dependence/independence. Let v1; :::; vk2Rn. We say they are linearly
dependent if there are a1; :::; ak2R, not all equal to 0, such that

a1 v1+ ���+ ak vk=0: (30)

If no such a1; :::; ak exist, we say the vectors are linearly independent.

Exercise 20. Prove that, if v1; :::; vk are linearly independent, then the following holds.
If a1; :::; ak2R satisfy a1 v1+ ���+ak vk=0, then a1= a2= ���= ak=0.

Exercise 21. Prove that if v1; :::; vk are linearly dependent, then at least one of them is
�redundant� in the sense that it equals a linear combination of the other vectors.

� n vectors v1= (v11; :::; v1n); :::; vn= (vn1; :::; vnn)2Rn are linearly independent if and
only if detA=/ 0 where

A=

0@ v11 ��� v1n
��� ��� ���
vn1 ��� vnn

1A: (31)

� n vectors v1; :::; vn2Rn are linearly independent if and only if they form a �base� of
Rn, that is every u2Rn can be written uniquely as a linear combination of v1; :::; vn.
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3. Di�erential equations

A di�erential equation is an equation involving the derivative (and/or higher
order derivatives) of functions.

3.1. The simplest and second simplest di�erential equations

In the following x(t):R 7!R is a single variable function.

� The simplets ODE.
Consider

dx
dt

= f(t): (32)

Its solution, by de�nition, is the inde�nite integral

x(t)=

Z
f(s) ds (33)

which by the fundamental theorem of calculus further equalsZ
0

t

f(s) ds+C (34)

where C is an arbitrary constant.
If we further specify x(t0)=x0, then this constant is �xed.

Exercise 22. What is the solution to

dx
dt

= f(t); x(t0)=x0? (35)

Exercise 23. Solve
dx
dt

= f(x); x(t0)=x0: (36)

� The next simplest ODE.
Consider

dx(t)
dt

+ c x(t)= f(t); x(0)= x0: (37)

where c 2R. Multiplying both sides by ect and apply Leibniz rule of di�erentiation
of product of functions, we reach

d
dt
(ectx(t))= ect f(t); (38)

which is the simplest ODE now. The solution of (38) is

ectx(t)=x0+

Z
0

t

ecs f(s) ds (39)

which now gives

x(t)= e¡ctx0+

Z
0

t

ec(s¡t) f(s) ds: (40)

Exercise 24. Solve
dx(t)
dt

+ c x(t)= f(t); x(t0)=x0: (41)
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In general, the equation

dx(t)
dt

+ c(t)x(t)= f(t) (42)

could be solved by multiplying both sides by eC(t) where C(t) satis�es C 0(t)= c(t).

Exercise 25. Solve
dx(t)
dt

+ c(t) x(t)= f(t); x(0)=x0: (43)

3.2. Existence and uniqueness of a general �rst order ODE

� General situation we face in 348.

� In 348 we often need to study systems of di�erential equations:

dx1(t)
dt

= f1(x1(t); :::; xn(t)); x1(0)=x01 (44)
��� ��� ���

dxn(t)
dt

= fn(x1(t); :::; xn(t)): xn(0)= x0n (45)

� Taking advantage of multivariable calculus, we can re-write the above to a
more compact form:

dx(t)
dt

= f(x(t)); x(0)=x0 (46)

where x:R 7!Rn, f :Rn 7!Rn, and x0=(x01; :::; x0n).

� The one ODE system that we could really solve.

� For general f there is little hope explicitly solving (46). However there is a
special, very useful, situation that we could solve.

� Consider the case where

fi(x1; :::; xn)= ai1x1+ ���+ ain xn; i=1; 2; :::; n (47)

where aij 2R for all i; j=1; 2; :::; n. In other words, we have

dx(t)
dt

=Ax(t); x(0)=x0: (48)

� Now to further simplify the situation, we assume A has n linearly independent
eigenvectors v1; :::; vn. Writing x(t) = z1(t) v1 + ��� + zn(t) vn and x0 =
z01v1+ ���+ z0n vn we obtain

dzi(t)
dt

=�i zi(t); zi(0)= zi0: (49)

Exercise 26. Justify (49).

Exercise 27. Finish the solution.

� Existence and uniqueness theorem.

Di�erential Geometry of Curves & Surfaces

10



Although there is little hope explicitly solving (46), we have the following quali-
tative understanding.

Theorem 11. Let f : Rn 7! Rn be di�erentiable with continuous derivatives. Then
there is T > 0 and a unique function x(t) satisfying x(0)= x0, and for all 0< t<T,

dx(t)
dt

= f(x): (50)

Exercise 28. Let A(t)=
0@ a11(t) ��� a1n(t)

��� ��� ���
an1(t) ��� ann(t)

1A be such that aij(t) are continuous functions of t for

every i; j=1; 2; :::; n. Prove that the solution to

dx(t)
dt

=A(t)x(t) (51)

exists and is unique.

Remark 12. We will see later that existence of curves with certain desirable prop-
erties would be equivalent to the existence of solution to an ODE of the form (46).
Then Theorem 11 would guarantee us that this curve exists.
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