Homework 9: Gauss-Bonnet

(Total 20 pts; Due Dec. 2 12pm)

Question 1. (5 PTs) Let S be a regular, orientable, compact surface with positive Gaussian curvature: $K>K_{\min }>0$. Prove that the surface area of S is less than $4 \pi / K_{\min }$.

Proof. Take any simple closed curve γ on S. γ divides S into two regions Ω_{1}, Ω_{2}. Let γ be oriented such that Ω_{1} is its interior. Then by Gauss-Bonnet theorem

$$
\begin{equation*}
\int_{\Omega_{1}} K \mathrm{~d} S+\int_{\gamma} \kappa_{g} \mathrm{~d} s=2 \pi, \quad \int_{\Omega_{2}} K \mathrm{~d} S+\int_{-\gamma} \kappa_{g} \mathrm{~d} s=2 \pi \tag{1}
\end{equation*}
$$

where $-\gamma$ is γ with the opposite orientation. Since
we have

$$
\begin{equation*}
\int_{-\gamma} \kappa_{g} \mathrm{~d} s=-\int_{\gamma} \kappa_{g} \mathrm{~d} s \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
4 \pi=\int_{S} K \mathrm{~d} S \geqslant \int_{S} K_{\min } \mathrm{d} S \tag{3}
\end{equation*}
$$

and the conclusion follows.
QuEstion 2. (5 PTs) Let S be a compact oriented surface that can be smoothly deformed into a sphere. Let γ be a simple closed geodesic separating S into two regions A, B. Let \mathcal{G} : $S \mapsto \mathbb{S}^{2}$ be the Gauss map. Prove that $\mathcal{G}(A)$ and $\mathcal{G}(B)$ have the same area.
Proof. Since \mathbb{S}^{2} taking away one point can be covered by one single surface patch, so can S. Let $\sigma(u, v)$ be such a surface patch for S. Then we have

$$
\begin{equation*}
\int_{S} K \mathrm{~d} S=\int_{U} K(u, v) \sqrt{\mathbb{E} \mathbb{G}-\mathbb{F}^{2}} \mathrm{~d} u \mathrm{~d} v \tag{4}
\end{equation*}
$$

Now let U_{A}, U_{B} be such that $\sigma\left(U_{A}\right)=A, \sigma\left(U_{B}\right)=B$ (maybe missing one point). Denote $N(u, v):=\mathcal{G}(\sigma(u, v))$. Then we have

$$
\begin{equation*}
\text { Area of } \mathcal{G}(A)=\int_{U_{A}}\left\|N_{u} \times N_{v}\right\| \mathrm{d} u \mathrm{~d} v \tag{5}
\end{equation*}
$$

Recalling

$$
\begin{equation*}
-N_{u}=a_{11} \sigma_{u}+a_{12} \sigma_{v}, \quad-N_{v}=a_{21} \sigma_{u}+a_{22} \sigma_{v} \tag{6}
\end{equation*}
$$

we have

Consequently

$$
N_{u} \times N_{v}=\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{21} \tag{7}\\
a_{12} & a_{22}
\end{array}\right) \sigma_{u} \times \sigma_{v}=K \sigma_{u} \times \sigma_{v}
$$

$$
\begin{align*}
\int_{U_{A}}\left\|N_{u} \times N_{v}\right\| \mathrm{d} u \mathrm{~d} v & =\int_{U_{A}} K\left\|\sigma_{u} \times \sigma_{v}\right\| \mathrm{d} u \mathrm{~d} v \\
& =\int_{U_{A}} K(u, v) \sqrt{\mathbb{E} \mathbb{G}-\mathbb{F}^{2}} \mathrm{~d} u \mathrm{~d} v \\
& =\int_{A} K \mathrm{~d} S \\
& =2 \pi-\int_{\gamma} \kappa_{g} \mathrm{~d} s=2 \pi \tag{8}
\end{align*}
$$

Similarly we have Area of $\mathcal{G}(B)=2 \pi$.
Question 3. Let S be a developable surface. Let γ be a curve on S. Let $\tilde{\gamma}$ be the curve corresponding to γ on the plane that is the "flattened" S. Prove or disprove: The geodesic curvature of γ and the signed curvature of $\tilde{\gamma}$ are the same at corresponding points.

Solution. We prove that the claim is true.
Let $\sigma(u, v): U \mapsto S$ a local isometry from the plane to S. Clearly $\sigma(u, v)$ can serve as a surface patch. Furthermore we have $\mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$ and consequently all $\Gamma_{i j}^{k}=0$. Note that this implies the surface normal

$$
\begin{equation*}
N=\sigma_{u} \times \sigma_{v} \tag{9}
\end{equation*}
$$

and that $\sigma_{u u}, \sigma_{u v}, \sigma_{v v} \| N$.
Now let $(u(s), v(s))$ be an arc length parametrization of $\tilde{\gamma}$. We then see that $x(s):=$ $\sigma(u(s), v(s))$ is an arc length parametrization of γ. Thus

$$
\begin{align*}
\kappa_{g} & =x^{\prime \prime} \cdot\left(N \times x^{\prime}\right) \\
& =\left[\sigma_{u u}\left(u^{\prime}\right)^{2}+2 \sigma_{u v} u^{\prime} v^{\prime}+\sigma_{v v}\left(v^{\prime}\right)^{2}+\sigma_{u} u^{\prime \prime}+\sigma_{v} v^{\prime \prime}\right] \cdot\left[\left(\sigma_{u} \times \sigma_{v}\right) \cdot\left(u^{\prime} \sigma_{u}+v^{\prime} \sigma_{v}\right)\right] \\
& =\left[\sigma_{u u}\left(u^{\prime}\right)^{2}+2 \sigma_{u v} u^{\prime} v^{\prime}+\sigma_{v v}\left(v^{\prime}\right)^{2}+\sigma_{u} u^{\prime \prime}+\sigma_{v} v^{\prime \prime}\right] \cdot\left(u^{\prime} \sigma_{v}-v^{\prime} \sigma_{u}\right) \\
& =v^{\prime \prime} u^{\prime}-u^{\prime \prime} v^{\prime} \\
& =\binom{u}{v}^{\prime \prime} \cdot\left[\binom{u}{v}^{\prime}\right]^{\perp}=\kappa_{s} . \tag{10}
\end{align*}
$$

QUESTION 4. (5 PTS) Let $f: S_{1} \mapsto S_{2}$ be a local isometry. Let a curve $\gamma_{1} \subset S_{1}$ and $\gamma_{2}:=f\left(\gamma_{1}\right)$. Let $w_{1}(s)$ be a parallel tangent vector field along γ_{1}. For every $p \in \gamma_{1}$, Let $w_{2}(f(p)):=$ $(D f)(p)\left(w_{1}(p)\right)$. Then $w_{2}(s)$ is a tangent vector field along γ_{2}. Prove or disprove: w_{2} is parallel along γ_{2}.

Solution. We prove that the claim is true.
Let $\sigma_{1}(u, v)$ be a surface patch for S_{1} and let $\sigma_{2}(u, v):=f\left(\sigma_{1}(u, v)\right)$. Also let $x_{1}(s)$ be an arc length parametrization of γ_{1} and let $x_{2}(s):=f\left(x_{1}(s)\right)$. Since f is a local isometry, s is also the arc length parameter of γ_{2}.

In this setup we have $\sigma_{2, u}=(D f)\left(\sigma_{1, u}\right)$ and $\sigma_{2, v}=(D f)\left(\sigma_{1}, v\right)$. Now let $w_{1}(s)=$ $\alpha(s) \sigma_{1, u}+\beta(s) \sigma_{1, v}$. Then we have $w_{2}(s)=\alpha(s) \sigma_{2, u}+\beta(s) \sigma_{2, v}$. Since $w_{1}(s)$ is parallel along γ_{1}, we have

$$
\begin{align*}
& \left(\mathbb{E}_{1} \alpha+\mathbb{F}_{1} \beta\right)^{\prime}=\frac{1}{2}\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\left(\begin{array}{ll}
\mathbb{E}_{1} & \mathbb{F}_{1} \\
\mathbb{F}_{1} & \mathbb{G}_{1}
\end{array}\right)_{u}\binom{u^{\prime}}{v^{\prime}}, \\
& \left(\mathbb{F}_{1} \alpha+\mathbb{G}_{1} \beta\right)^{\prime}=\frac{1}{2}\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\left(\begin{array}{ll}
\mathbb{E}_{1} & \mathbb{F}_{1} \\
\mathbb{F}_{1} & \mathbb{G}_{1}
\end{array}\right)_{v}\binom{u^{\prime}}{v^{\prime}} \tag{11}
\end{align*}
$$

But since $\mathbb{E}_{1}=\mathbb{E}_{2}, \mathbb{F}_{1}=\mathbb{F}_{2}, \mathbb{G}_{1}=\mathbb{G}_{2},(\alpha(s), \beta(s))$ satisfies the corresponding equations on S_{2} and consequently w_{2} is also parallel along γ_{2}.

The following are more abstract or technical questions. They carry bonus points.
There is no bonus problem for this homework.

