HOMEWORK 9: GAUSS-BONNET

(Total 20 pts; Due Dec. 2 12pm)

QUESTION 1. (5 PTS) Let S be a regular, orientable, compact surface with positive Gaussian curvature: $K > K_{\min} > 0$. Prove that the surface area of S is less than $4 \pi / K_{\min}$.

Proof. Take any simple closed curve γ on S. γ divides S into two regions Ω_1, Ω_2 . Let γ be oriented such that Ω_1 is its interior. Then by Gauss-Bonnet theorem

$$\int_{\Omega_1} K \,\mathrm{d}S + \int_{\gamma} \kappa_g \,\mathrm{d}s = 2\,\pi, \qquad \int_{\Omega_2} K \,\mathrm{d}S + \int_{-\gamma} \kappa_g \,\mathrm{d}s = 2\,\pi \tag{1}$$

where $-\gamma$ is γ with the opposite orientation. Since

$$\int_{-\gamma} \kappa_g \,\mathrm{d}s = -\int_{\gamma} \kappa_g \,\mathrm{d}s \tag{2}$$

we have

$$4\pi = \int_{S} K \,\mathrm{d}S \geqslant \int_{S} K_{\min} \,\mathrm{d}S \tag{3}$$

and the conclusion follows.

QUESTION 2. (5 PTS) Let S be a compact oriented surface that can be smoothly deformed into a sphere. Let γ be a simple closed geodesic separating S into two regions A, B. Let \mathcal{G} : $S \mapsto \mathbb{S}^2$ be the Gauss map. Prove that $\mathcal{G}(A)$ and $\mathcal{G}(B)$ have the same area.

Proof. Since S^2 taking away one point can be covered by one single surface patch, so can S. Let $\sigma(u, v)$ be such a surface patch for S. Then we have

$$\int_{S} K \,\mathrm{d}S = \int_{U} K(u, v) \,\sqrt{\mathbb{E}\,\mathbb{G} - \mathbb{F}^2} \,\mathrm{d}u \,\mathrm{d}v. \tag{4}$$

Now let U_A , U_B be such that $\sigma(U_A) = A$, $\sigma(U_B) = B$ (maybe missing one point). Denote $N(u, v) := \mathcal{G}(\sigma(u, v))$. Then we have

Area of
$$\mathcal{G}(A) = \int_{U_A} ||N_u \times N_v|| \,\mathrm{d}u \,\mathrm{d}v.$$
 (5)

Recalling

$$-N_u = a_{11}\sigma_u + a_{12}\sigma_v, \qquad -N_v = a_{21}\sigma_u + a_{22}\sigma_v, \tag{6}$$

we have

$$N_u \times N_v = \det \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \sigma_u \times \sigma_v = K \sigma_u \times \sigma_v.$$
(7)

Consequently

$$\int_{U_A} \|N_u \times N_v\| \, \mathrm{d}u \, \mathrm{d}v = \int_{U_A} K \|\sigma_u \times \sigma_v\| \, \mathrm{d}u \, \mathrm{d}v \\
= \int_{U_A} K(u, v) \sqrt{\mathbb{E} \, \mathbb{G} - \mathbb{F}^2} \, \mathrm{d}u \, \mathrm{d}v \\
= \int_A K \, \mathrm{d}S \\
= 2 \, \pi - \int_\gamma \kappa_g \, \mathrm{d}s = 2 \, \pi.$$
(8)

Similarly we have Area of $\mathcal{G}(B) = 2\pi$.

QUESTION 3. Let S be a developable surface. Let γ be a curve on S. Let $\tilde{\gamma}$ be the curve corresponding to γ on the plane that is the "flattened" S. Prove or disprove: The geodesic curvature of γ and the signed curvature of $\tilde{\gamma}$ are the same at corresponding points.

Solution. We prove that the claim is true.

Let $\sigma(u, v): U \mapsto S$ a local isometry from the plane to S. Clearly $\sigma(u, v)$ can serve as a surface patch. Furthermore we have $\mathbb{E} = \mathbb{G} = 1, \mathbb{F} = 0$ and consequently all $\Gamma_{ij}^k = 0$. Note that this implies the surface normal

$$N = \sigma_u \times \sigma_v, \tag{9}$$

and that $\sigma_{uu}, \sigma_{uv}, \sigma_{vv} \parallel N$.

Now let (u(s), v(s)) be an arc length parametrization of $\tilde{\gamma}$. We then see that $x(s) := \sigma(u(s), v(s))$ is an arc length parametrization of γ . Thus

$$\begin{aligned}
\kappa_g &= x'' \cdot (N \times x') \\
&= \left[\sigma_{uu} (u')^2 + 2 \sigma_{uv} u' v' + \sigma_{vv} (v')^2 + \sigma_u u'' + \sigma_v v''\right] \cdot \left[(\sigma_u \times \sigma_v) \cdot (u' \sigma_u + v' \sigma_v)\right] \\
&= \left[\sigma_{uu} (u')^2 + 2 \sigma_{uv} u' v' + \sigma_{vv} (v')^2 + \sigma_u u'' + \sigma_v v''\right] \cdot (u' \sigma_v - v' \sigma_u) \\
&= v'' u' - u'' v' \\
&= \left(\begin{array}{c}u\\v\end{array}\right)'' \cdot \left[\left(\begin{array}{c}u\\v\end{array}\right)'\right]^{\perp} = \kappa_s.
\end{aligned}$$
(10)

QUESTION 4. (5 PTS) Let $f: S_1 \mapsto S_2$ be a local isometry. Let a curve $\gamma_1 \subset S_1$ and $\gamma_2 := f(\gamma_1)$. Let $w_1(s)$ be a parallel tangent vector field along γ_1 . For every $p \in \gamma_1$, Let $w_2(f(p)) := (Df)(p)(w_1(p))$. Then $w_2(s)$ is a tangent vector field along γ_2 . Prove or disprove: w_2 is parallel along γ_2 .

Solution. We prove that the claim is true.

Let $\sigma_1(u, v)$ be a surface patch for S_1 and let $\sigma_2(u, v) := f(\sigma_1(u, v))$. Also let $x_1(s)$ be an arc length parametrization of γ_1 and let $x_2(s) := f(x_1(s))$. Since f is a local isometry, s is also the arc length parameter of γ_2 .

In this setup we have $\sigma_{2,u} = (Df)(\sigma_{1,u})$ and $\sigma_{2,v} = (Df)(\sigma_1, v)$. Now let $w_1(s) = \alpha(s) \sigma_{1,u} + \beta(s) \sigma_{1,v}$. Then we have $w_2(s) = \alpha(s) \sigma_{2,u} + \beta(s) \sigma_{2,v}$. Since $w_1(s)$ is parallel along γ_1 , we have

$$(\mathbb{E}_{1} \alpha + \mathbb{F}_{1} \beta)' = \frac{1}{2} (\alpha \beta) \begin{pmatrix} \mathbb{E}_{1} & \mathbb{F}_{1} \\ \mathbb{F}_{1} & \mathbb{G}_{1} \end{pmatrix}_{u} \begin{pmatrix} u' \\ v' \end{pmatrix},$$

$$(\mathbb{F}_{1} \alpha + \mathbb{G}_{1} \beta)' = \frac{1}{2} (\alpha \beta) \begin{pmatrix} \mathbb{E}_{1} & \mathbb{F}_{1} \\ \mathbb{F}_{1} & \mathbb{G}_{1} \end{pmatrix}_{v} \begin{pmatrix} u' \\ v' \end{pmatrix}.$$

$$(11)$$

But since $\mathbb{E}_1 = \mathbb{E}_2$, $\mathbb{F}_1 = \mathbb{F}_2$, $\mathbb{G}_1 = \mathbb{G}_2$, $(\alpha(s), \beta(s))$ satisfies the corresponding equations on S_2 and consequently w_2 is also parallel along γ_2 .

The following are more abstract or technical questions. They carry bonus points.

There is no bonus problem for this homework.