Homework 9: Gauss-Bonnet

(Total 20 pts; Due Dec. 2 12pm)
Question 1. (5 PTs) Let S be a regular, orientable, compact surface with positive Gaussian curvature: $K>K_{\min }>0$. Prove that the surface area of S is less than $4 \pi / K_{\min }$.

QuEstion 2. (5 PTs) Let S be a compact oriented surface that can be smoothly deformed into a sphere. Let γ be a simple closed geodesic separating S into two regions A, B. Let \mathcal{G} : $S \mapsto \mathbb{S}^{2}$ be the Gauss map. Prove that $\mathcal{G}(A)$ and $\mathcal{G}(B)$ have the same area.

Question 3. (5 PTs) Let S be a developable surface. Let γ be a curve on S. Let $\tilde{\gamma}$ be the "flattened" curve corresponding to γ on the plane that is the "flattened" S. Prove or disprove: The geodesic curvature of γ and the signed curvature of $\tilde{\gamma}$ are the same at corresponding points.

Question 4. (5 PTS) Let $f: S_{1} \mapsto S_{2}$ be a local isometry. Let a curve $\gamma_{1} \subset S_{1}$ and $\gamma_{2}:=f\left(\gamma_{1}\right)$. Let $w_{1}(s)$ be a tangent vector field that is parallel along γ_{1}. For every $p \in \gamma_{1}$, Let $w_{2}(f(p)):=$ $(D f)(p)\left(w_{1}(p)\right)$. Then $w_{2}(s)$ is a tangent vector field along γ_{2}. Prove or disprove: w_{2} is parallel along γ_{2}.

The following are more abstract or technical questions. They carry bonus points.
There is no bonus problem for this homework.

