Homework 8: Gauss and Codazzi Equations

(Total $20+5$ pts; Due Nov. 25 12pm)
Question 1. (10 pts) Decide whether there is a parametrized surface $\sigma(u, v)$ with
a) $(5 \mathrm{PTS}) \mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$ and $\mathbb{L}=\mathbb{N}=e^{2 u}, \mathbb{M}=0$.
b) (5 PTS) $\mathbb{E}=1, \mathbb{F}=0, \mathbb{G}=\sin ^{2} u, \mathbb{L}=\sin ^{2} u, \mathbb{M}=0, \mathbb{N}=1$.

Solution.

a) We first calculate the Christoffel symbols. Recall that

$$
\begin{align*}
\sigma_{u u} & =\Gamma_{11}^{1} \sigma_{u}+\Gamma_{11}^{2} \sigma_{v}+\mathbb{L} N \\
\sigma_{u v} & =\Gamma_{12}^{1} \sigma_{u}+\Gamma_{12}^{2} \sigma_{v}+\mathbb{M} N . \tag{1}\\
\sigma_{v v} & =\Gamma_{22}^{1} \sigma_{u}+\Gamma_{22}^{2} \sigma_{v}+\mathbb{N} N
\end{align*}
$$

From the first equation we have

$$
\begin{equation*}
\Gamma_{11}^{1}=\Gamma_{11}^{1} \sigma_{u} \cdot \sigma_{u}=\sigma_{u u} \cdot \sigma_{u}=\left(\frac{\mathbb{E}}{2}\right)_{u}=0 \tag{2}
\end{equation*}
$$

due to the fact that $\sigma_{u} \cdot \sigma_{u}=\mathbb{E}=1, \sigma_{u} \cdot \sigma_{v}=\mathbb{F}=0, \sigma_{u} \cdot N=0$. Similarly we find that all other $\Gamma_{i j}^{k}$ are zero too. The Gauss equations now yield $e^{4 u}=\frac{\mathbb{L N}-\mathbb{M}^{2}}{\mathbb{E} \mathbb{G}-\mathbb{F}^{2}}=K=0$, contradiction. Therefore such surface does not exist.
b) Again we start from

$$
\begin{align*}
& \sigma_{u u}=\Gamma_{11}^{1} \sigma_{u}+\Gamma_{11}^{2} \sigma_{v}+\mathbb{L} N \\
& \sigma_{u v}=\Gamma_{12}^{1} \sigma_{u}+\Gamma_{12}^{2} \sigma_{v}+\mathbb{M} N . \tag{3}\\
& \sigma_{v v}=\Gamma_{22}^{1} \sigma_{u}+\Gamma_{22}^{2} \sigma_{v}+\mathbb{N} N .
\end{align*}
$$

We solve

$$
\begin{equation*}
\Gamma_{11}^{1}=\Gamma_{11}^{2}=\Gamma_{12}^{1}=\Gamma_{22}^{2}=0, \quad \Gamma_{12}^{2}=\frac{\cos u}{\sin u}, \quad \Gamma_{22}^{1}=-\sin u \cos u . \tag{4}
\end{equation*}
$$

We also have

$$
\begin{equation*}
K=\frac{\mathbb{L} \mathbb{N}-\mathbb{M}^{2}}{\mathbb{E} \mathbb{G}-\mathbb{F}^{2}}=1 \tag{5}
\end{equation*}
$$

The Codazzi-Mainradi now become

$$
\begin{align*}
& 0=0 \tag{6}\\
& 0=\sin ^{2} u(-\sin u \cos u)
\end{align*}
$$

which is not satisfied. Therefore such surface does not exist.
Question 2. (10 PTS) Let S be a surface with first fundamental form $u^{2} \mathrm{~d} u^{2}+\beta u^{2} \mathrm{~d} v^{2}$ for some $\beta>0$, and second fundamental form $A(u, v) \mathrm{d} u^{2}+B(u, v) \mathrm{d} v^{2}$.
a) (5 PTs) Find β. Change to: Prove that $A(u, v) B(u, v)=\beta$.
b) (5 PTS) Prove that $A(u, v), B(u, v)$ are functions of u only.

Proof. We first calculate the Christoffel symbols. We have

$$
\begin{gather*}
\sigma_{u u}=\Gamma_{11}^{1} \sigma_{u}+\Gamma_{11}^{2} \sigma_{v}+A(u, v) N \Longrightarrow\left\{\begin{array}{l}
\mathbb{E} \Gamma_{11}^{1}=\sigma_{u u} \cdot \sigma_{u} \Longrightarrow \Gamma_{11}^{1}=\frac{1}{u}, \\
\mathbb{G} \Gamma_{11}^{2}=\sigma_{u u} \cdot \sigma_{v} \Longrightarrow \Gamma_{11}^{2}=0 .
\end{array}\right. \tag{7}\\
\sigma_{u v}=\Gamma_{12}^{1} \sigma_{u}+\Gamma_{12}^{2} \sigma_{v} \Longrightarrow\left\{\begin{array}{l}
\mathbb{E} \Gamma_{12}^{1}=\sigma_{u v} \cdot \sigma_{u} \Longrightarrow \Gamma_{12}^{1}=0, \\
\mathbb{G} \Gamma_{12}^{2}=\sigma_{u v} \cdot \sigma_{v} \Longrightarrow \Gamma_{12}^{2}=\frac{1}{u} .
\end{array}\right. \tag{8}\\
\sigma_{v v}=\Gamma_{22}^{1} \sigma_{u}+\Gamma_{22}^{2} \sigma_{v}+B(u, v) N \Longrightarrow\left\{\begin{array}{l}
\mathbb{E} \Gamma_{22}^{1}=\sigma_{v v} \cdot \sigma_{u} \Longrightarrow \Gamma_{22}^{1}=-\frac{\beta}{u}, \\
\mathbb{G} \Gamma_{22}^{2}=\sigma_{v v} \cdot \sigma_{v} \Longrightarrow \Gamma_{22}^{2}=0 .
\end{array}\right. \tag{9}
\end{gather*}
$$

The Codazzi-Mainradi equations and the Gauss equations now become

$$
\begin{align*}
A_{v} & =0 \tag{10}\\
-B_{u} & =-\frac{A(u, v)}{u}-\frac{B(u, v)}{u} \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
u^{2} K & =\frac{1}{u^{2}} \tag{12}\\
0 & =0 \tag{13}\\
& =0, \tag{14}\\
u^{2} K & =\frac{1}{u^{2}} . \tag{15}
\end{align*}
$$

a) By the Gauss equations $u^{2} K=\frac{1}{u^{2}} \Longrightarrow K=\frac{1}{u^{4}}$. On the other hand $K=\frac{A(u, v) B(u, v)}{\beta u^{4}}$. Therefore $A(u, v) B(u, v)=\beta$.
b) Due to (10) A is a function of u only. Since $A B=\beta$, we have $B=\beta / A$ is also a function of u only.

The following are more abstract or technical questions. They carry bonus points.
Question 3. (5 PTs) Let S be such that $\kappa_{1} \neq \kappa_{2}$ are both constants. Prove that its Gaussian curvature is 0 .
(You can assume that the surface patch is such that $\sigma_{u}\left\|t_{1}, \sigma_{v}\right\| t_{2}$ where t_{1}, t_{2} are the principal vectors.)

Proof. With such $\sigma(u, v)$ we have the first and second fundamental forms to be $\mathbb{E} \mathrm{d} u^{2}+$ $\mathbb{G} \mathrm{d} v^{2}$ and $\mathbb{L} \mathrm{d} u^{2}+\mathbb{N} \mathrm{d} v^{2}$, and furthermore $\kappa_{1}=\frac{\mathbb{L}}{\mathbb{E}}, \kappa_{2}=\frac{\mathbb{N}}{\mathbb{G}}$.

Now we calculate

$$
\begin{array}{ll}
\Gamma_{11}^{1}=\frac{\mathbb{E}_{u}}{2 \mathbb{E}}, & \Gamma_{11}^{2}=-\frac{\mathbb{E}_{v}}{2 \mathbb{G}}, \\
\Gamma_{12}^{1}=\frac{\mathbb{E}_{v}}{2 \mathbb{E}}, & \Gamma_{12}^{2}=\frac{\mathbb{G}_{u}}{2 \mathbb{G}}, \tag{16}\\
\Gamma_{22}^{1}=-\frac{\mathbb{G}_{u}}{2 \mathbb{E}}, & \Gamma_{22}^{2}=\frac{\mathbb{G}_{v}}{2 \mathbb{G}} .
\end{array}
$$

The Codazzi-Mainradi equations now become

$$
\begin{equation*}
\mathbb{L}_{v}=\frac{1}{2} \mathbb{E}_{v}\left(\frac{\mathbb{L}}{\mathbb{E}}+\frac{\mathbb{N}}{\mathbb{G}}\right)=\frac{\kappa_{1}+\kappa_{2}}{2} \mathbb{E}_{v}, \quad \mathbb{N}_{u}=\frac{1}{2} \mathbb{G}_{u}\left(\frac{\mathbb{L}}{\mathbb{E}}+\frac{\mathbb{N}}{\mathbb{G}}\right)=\frac{\kappa_{1}+\kappa_{2}}{2} \mathbb{G}_{u} \tag{17}
\end{equation*}
$$

Together with $\mathbb{L}_{v}=\kappa_{1} \mathbb{E}_{v}, \mathbb{N}_{u}=\kappa_{2} \mathbb{G}_{u}$ and $\kappa_{1} \neq \kappa_{2}$, we see that

$$
\begin{equation*}
\mathbb{L}_{v}=\mathbb{E}_{v}=\mathbb{N}_{u}=\mathbb{G}_{u}=0 \tag{18}
\end{equation*}
$$

Substituting (18) into (16) we see that

$$
\begin{equation*}
\Gamma_{11}^{1}=\frac{\mathbb{E}_{u}}{2 \mathbb{E}}, \quad \Gamma_{11}^{2}=\Gamma_{12}^{1}=\Gamma_{12}^{2}=\Gamma_{22}^{1}=0, \quad \Gamma_{22}^{2}=\frac{\mathbb{G}_{v}}{2 \mathbb{G}} \tag{19}
\end{equation*}
$$

Now the first Gauss equation becomes $\mathbb{E} K=0$ and consequently $K=0$.

