Homework 8: Gauss and Codazzi Equations

(Total $20+5$ pts; Due Nov. 25 12pm)
Question 1. (10 PTS) Decide whether there is a parametrized surface $\sigma(u, v)$ with
a) $(5 \mathrm{PTS}) \mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$ and $\mathbb{L}=\mathbb{N}=e^{2 u}, \mathbb{M}=0$.
b) $(5 \mathrm{PTS}) \mathbb{E}=1, \mathbb{F}=0, \mathbb{G}=\sin ^{2} u, \mathbb{L}=\sin ^{2} u, \mathbb{M}=0, \mathbb{N}=1$.

Question 2. (10 pts) Let S be a surface with first fundamental form $u^{2} \mathrm{~d} u^{2}+\beta u^{2} \mathrm{~d} v^{2}$ for some $\beta>0$, and second fundamental form $A(u, v) \mathrm{d} u^{2}+B(u, v) \mathrm{d} v^{2}$.
a) (5 PTS) Find β.
b) (5 PTS) Prove that $A(u, v), B(u, v)$ are functions of u only.

The following are more abstract or technical questions. They carry bonus points.
Question 3. (5 PTs) Let S be such that $\kappa_{1} \neq \kappa_{2}$ are both constants. Prove that its Gaussian curvature is 0 .
(You can assume that the surface patch is such that $\sigma_{u}\left\|t_{1}, \sigma_{v}\right\| t_{2}$ where t_{1}, t_{2} are the principal vectors.)

