Homework 7: Parallel Transport and Geodesics

(Total 20 pts; Due Nov. 7 12pm)
Question 1. (5 PTS) Let γ be a curve on S. Let w be a tangent vector field parallel along γ. Find all $\lambda: \gamma \mapsto \mathbb{R}$ such that λw is still parallel along γ.

Question 2. (5 PTS) Let γ be a curve on S. Let w, \tilde{w} be unit vector fields along γ. Further assume that at every $p \in \gamma$, there holds the angle between $w, \tilde{w}, \angle(w, \tilde{w})=\theta_{0}$, a constant. Prove or disprove: w is parallel along γ if and only if \tilde{w} is parallel along γ.

Question 3. (10 pts) Let S be a surface parametrized by $\sigma(u, v)=(u, v, u v)$.
a) (7 PTS) Calculate the Christoffel symbols $\Gamma_{11}^{1}, \ldots, \Gamma_{22}^{2}$.
b) (2 PTS) Write down the geodesic equations for this surface.
c) (1 PT) Prove that $u=$ constant and $v=$ constant are geodesics.

The following are more abstract or technical questions. They carry bonus points.
There is no bonus question for this homework.

