Homework 6: Curvatures for Surfaces

(Total 20 pts + bonus 5 pts; Due Oct. 28 12pm)
Question 1. (10 PTs) Calculate $H, K, \kappa_{1}, \kappa_{2}, t_{1}, t_{2}$ at the point $(1,1,1)$ for the surface $z=x y$.

Solution. We take the natural surface patch $\sigma(u, v)=(u, v, u v)$. Then we have

$$
\begin{gather*}
\sigma_{u}=(1,0, v), \quad \sigma_{v}=(0,1, u), \quad \sigma_{u u}=\sigma_{v v}=(0,0,0), \quad \sigma_{u v}=(0,0,1), \tag{1}\\
N=\frac{(-v,-u, 1)}{\sqrt{1+u^{2}+v^{2}}} . \tag{2}
\end{gather*}
$$

Thus at $(1,1,1)$ which corresponds to $u=v=1$, we have

$$
\begin{equation*}
\sigma_{u}=(1,0,1), \sigma_{v}=(0,1,1), \sigma_{u u}=\sigma_{v v}=(0,0,0), \sigma_{u v}=(0,0,1), N=\frac{(-1,-1,1)}{\sqrt{3}} . \tag{3}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\mathbb{E}=2, \mathbb{F}=1, \mathbb{G}=2, \mathbb{L}=\mathbb{N}=0, \mathbb{M}=\frac{1}{\sqrt{3}} \tag{4}
\end{equation*}
$$

Solving the equation

$$
\operatorname{det}\left(\begin{array}{cc}
\mathbb{L}-\kappa_{i} \mathbb{E} & \mathbb{M}-\kappa_{i} \mathbb{F} \tag{5}\\
\mathbb{M}-\kappa_{i} \mathbb{F} & \mathbb{N}-\kappa_{i} \mathbb{G}
\end{array}\right)=0
$$

we obtain $\kappa_{1}=\frac{1}{3 \sqrt{3}}, \kappa_{2}=-\frac{1}{\sqrt{3}}$. Now we have

$$
\left(\begin{array}{cc}
\mathbb{L}-\kappa_{1} \mathbb{E} & \mathbb{M}-\kappa_{1} \mathbb{F} \tag{6}\\
\mathbb{M}-\kappa_{1} \mathbb{F} & \mathbb{N}-\kappa_{1} \mathbb{G}
\end{array}\right)=\frac{2}{3 \sqrt{3}}\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

Thus

$$
\frac{2}{3 \sqrt{3}}\left(\begin{array}{cc}
-1 & 1 \tag{7}\\
1 & -1
\end{array}\right)\binom{a_{1}}{b_{1}}=0 \Longrightarrow t_{1}=\frac{(1,1,2)}{\sqrt{6}} .
$$

Similarly we have

$$
\begin{equation*}
t_{2}=\frac{(1,-1,0)}{\sqrt{2}} . \tag{8}
\end{equation*}
$$

Finally we easily obtain

$$
\begin{equation*}
H=\frac{\kappa_{1}+\kappa_{2}}{2}=-\frac{1}{3 \sqrt{3}}, \quad K=\kappa_{1} \kappa_{2}=-\frac{1}{9} . \tag{9}
\end{equation*}
$$

Question 2. (5 PTS) Let $\sigma(u, v)$ be a surface patch. Assume that $\mathbb{E}=\mathbb{G}, \mathbb{F}=0$.
a) (3 PTS) Prove that $\sigma_{u u}+\sigma_{v v}$ is perpendicular to σ_{u} and σ_{v}.
b) (2 PTs) Prove that if $\sigma_{u u}+\sigma_{v v}=0$ then $H=0$.

Proof.

a) We have

$$
\begin{align*}
\left(\sigma_{u u}+\sigma_{v v}\right) \cdot \sigma_{u} & =\sigma_{u u} \cdot \sigma_{u}+\sigma_{v v} \cdot \sigma_{u} \\
& =\left(\frac{\mathbb{E}}{2}\right)_{u}+\left(\sigma_{u} \cdot \sigma_{v}\right)_{v}-\sigma_{u v} \cdot \sigma_{v} \\
& =\left(\frac{\mathbb{E}}{2}\right)_{u}+\mathbb{F}_{v}-\left(\frac{\mathbb{G}}{2}\right)_{u} \\
& =0 \tag{10}
\end{align*}
$$

Similarly we have $\left(\sigma_{u u}+\sigma_{v v}\right) \cdot \sigma_{v}=0$.
b) As $\sigma_{u u}+\sigma_{v v}=0$ we have $\mathbb{L}+\mathbb{N}=0$. Then using $\mathbb{E}=\mathbb{G}, \mathbb{F}=0$ we have

$$
\begin{equation*}
H=\frac{\mathbb{E} \mathbb{N}+\mathbb{L} \mathbb{G}-2 \mathbb{M} \mathbb{F}}{2\left(\mathbb{E} \mathbb{G}-\mathbb{F}^{2}\right)}=\frac{\mathbb{E}(\mathbb{L}+\mathbb{N})}{2 \mathbb{E}^{2}}=0 \tag{11}
\end{equation*}
$$

Thus ends the proof.
Question 3. (5 Pts) Let a surface S be such that $H=0, K \neq 0$. Prove that its Gauss map \mathcal{G} is conformal. That is if σ is a surface patch for S and we take $\tilde{\sigma}:=\mathcal{G} \circ \sigma$ as the surface patch for \mathbb{S}^{2}, then there is a scalar function λ such that $\tilde{\mathbb{E}}=\lambda \mathbb{E}, \tilde{\mathbb{F}}=\lambda \mathbb{F}, \tilde{\mathbb{G}}=\lambda \mathbb{G}$.
(Hint: Write $-N_{u}=a_{11} \sigma_{u}+a_{12} \sigma_{v},-N_{v}=a_{21} \sigma_{u}+a_{22} \sigma_{v}$ and recall the relations between $a_{i j}$ and $\mathbb{E}, \mathbb{F}, \mathbb{G}, \mathbb{L}, \mathbb{M}, \mathbb{N}, H, K$. It also helps to write things in matrix form.)

Proof. The surface patch $\tilde{\sigma}$ is in fact just $N(u, v)=\mathcal{G}(\sigma(u, v))$. We write

$$
\begin{equation*}
-N_{u}=a_{11} \sigma_{u}+a_{12} \sigma_{v}, \quad-N_{v}=a_{21} \sigma_{u}+a_{22} \sigma_{v} \tag{12}
\end{equation*}
$$

Then we have

$$
\left(\begin{array}{cc}
\tilde{\mathbb{E}} & \tilde{\mathbb{F}} \tag{13}\\
\tilde{\mathbb{F}} & \tilde{\mathbb{G}}
\end{array}\right)=\left(\begin{array}{ll}
N_{u} \cdot N_{u} & N_{u} \cdot N_{v} \\
N_{u} \cdot N_{v} & N_{v} \cdot N_{v}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right) .
$$

Now recalling $\left(\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right)=\left(\begin{array}{cc}\mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G}\end{array}\right)^{-1}\left(\begin{array}{cc}\mathbb{L} & \mathbb{M} \\ \mathbb{M} & \mathbb{N}\end{array}\right)$, we see that

$$
\left(\begin{array}{ll}
\tilde{\mathbb{E}} & \tilde{\mathbb{F}} \tag{14}\\
\tilde{\mathbb{F}} & \tilde{\mathbb{G}}
\end{array}\right)=\left(\begin{array}{cc}
\mathbb{L} & \mathbb{M} \\
\mathbb{M} & \mathbb{N}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)^{-1}\left(\begin{array}{cc}
\mathbb{L} & \mathbb{M} \\
\mathbb{M} & \mathbb{N}
\end{array}\right)=\left(\begin{array}{ll}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right)^{2} .
$$

Next since $0=H=a_{11}+a_{22}$, we have

$$
\left(\begin{array}{cc}
a_{11} & a_{21} \tag{15}\\
a_{12} & a_{22}
\end{array}\right)^{2}=\left(\begin{array}{cc}
a_{11}^{2}+a_{21} a_{12} & a_{11} a_{21}+a_{22} a_{21} \\
a_{11} a_{12}+a_{22} a_{12} & a_{22}^{2}+a_{12} a_{21}
\end{array}\right)=\left(a_{12} a_{21}-a_{11} a_{22}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Consequently there holds

$$
\left(\begin{array}{cc}
\tilde{\mathbb{E}} & \tilde{\mathbb{F}} \tag{16}\\
\tilde{\mathbb{F}} & \tilde{\mathbb{G}}
\end{array}\right)=-\left[\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\right]\left(\begin{array}{cc}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right)=-K\left(\begin{array}{cc}
\mathbb{E} & \mathbb{F} \\
\mathbb{F} & \mathbb{G}
\end{array}\right),
$$

as desired.
The following are more abstract or technical questions. They carry bonus points.
Question 4. (Bonus, 5 Pts) Let S be a surface and $p_{0} \in S$. Assume that there is a surface patch σ covering $p_{0}=\sigma\left(u_{0}, v_{0}\right)$ such that at p_{0} there holds $\mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$ and $\mathbb{E}_{u}=\mathbb{E}_{v}=\mathbb{F}_{u}=\mathbb{F}_{v}=\mathbb{G}_{u}=\mathbb{G}_{v}=0$.
a) (3 PTs) Prove that the Gaussian curvature at p is

$$
\begin{equation*}
K=\frac{\partial^{2} \mathbb{F}}{\partial u \partial v}-\frac{1}{2} \frac{\partial^{2} \mathbb{G}}{\partial u^{2}}-\frac{1}{2} \frac{\partial^{2} \mathbb{E}}{\partial v^{2}} . \tag{17}
\end{equation*}
$$

b) (1 PT) Let \tilde{S} be another surface such that there is a local isometry $f: S \mapsto \tilde{S}$. Prove that the Gaussian curvature at $f(p)$ is $\tilde{K}=K$.
c) $(1 \mathrm{PT})$ Prove or disprove: $\tilde{H}=H$.

Proof.

a) We calculate

$$
\begin{align*}
\frac{\partial^{2} \mathbb{F}}{\partial u \partial v}-\frac{1}{2} \frac{\partial^{2} \mathbb{G}}{\partial u^{2}}-\frac{1}{2} \frac{\partial^{2} \mathbb{E}}{\partial v^{2}}= & \left(\sigma_{u} \cdot \sigma_{v}\right)_{u v}-\left(\frac{\sigma_{v}^{2}}{2}\right)_{u u}-\left(\frac{\sigma_{u}^{2}}{2}\right)_{v v} \\
= & \left(\sigma_{u u v} \cdot \sigma_{v}+\sigma_{u u} \cdot \sigma_{v v}+\sigma_{u v} \cdot \sigma_{u v}+\sigma_{u} \cdot \sigma_{u v v}\right) \\
& -\left(\sigma_{u v} \cdot \sigma_{u v}+\sigma_{v} \cdot \sigma_{u u v}\right)-\left(\sigma_{u v} \cdot \sigma_{u v}+\sigma_{u} \cdot \sigma_{u v v}\right) \\
= & \sigma_{u u} \cdot \sigma_{v v}-\sigma_{u v} \cdot \sigma_{u v} . \tag{18}
\end{align*}
$$

Now at p_{0} write

$$
\begin{equation*}
\sigma_{u u}=a \sigma_{u}+b \sigma_{v}+\mathbb{L} N . \tag{19}
\end{equation*}
$$

As $\mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$ we see that $\sigma_{u}, \sigma_{v}, N$ form an orthonormal basis.
Since $\mathbb{E}_{u}=0$ we have $\sigma_{u u} \cdot \sigma_{u}=0$ (at p_{0} only!) so $a=0$. Since $\mathbb{F}_{u}=\mathbb{G}_{v}=0$ we have $\sigma_{u u} \cdot \sigma_{v}=0$ so $b=0$. Thus we have $\sigma_{u u}=\mathbb{L} N$.

Similarly we can prove $\sigma_{v v}=\mathbb{N} N$ and $\sigma_{u v}=\mathbb{M} N$. Consequently

$$
\begin{equation*}
\sigma_{u u} \cdot \sigma_{v v}-\sigma_{u v} \cdot \sigma_{u v}=\mathbb{L} \mathbb{N}-\mathbb{M}^{2}=K \tag{20}
\end{equation*}
$$

and the proof ends.
b) Let σ be a surface patch for S and let $\tilde{\sigma}:=f \circ \sigma$. Then $\tilde{\sigma}$ is a surface patch for \tilde{S} and we have, thanks to f being a local isometry, $\tilde{\mathbb{E}}=\mathbb{E}, \tilde{\mathbb{F}}=\mathbb{F}, \tilde{\mathbb{G}}=\mathbb{G}$. Now $\tilde{K}=K$ immediately follows from (17).
c) This is not correct. For example consider plane and cylinder. Note that when S is part of a plane, we can take an orthonormal basis and obtain $\mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$. Thus the assumptions are satisfied.

