HOMEWORK 6: CURVATURES FOR SURFACES

(Total 20 pts + bonus 5 pts; Due Oct. 28 12pm)

QUESTION 1. (10 PTS) Calculate $H, K, \kappa_1, \kappa_2, t_1, t_2$ at the point (1, 1, 1) for the surface z = x y.

Solution. We take the natural surface patch $\sigma(u, v) = (u, v, uv)$. Then we have

$$\sigma_u = (1, 0, v), \quad \sigma_v = (0, 1, u), \quad \sigma_{uu} = \sigma_{vv} = (0, 0, 0), \quad \sigma_{uv} = (0, 0, 1), \tag{1}$$

$$N = \frac{(-v, -u, 1)}{\sqrt{1 + u^2 + v^2}}.$$
(2)

Thus at (1, 1, 1) which corresponds to u = v = 1, we have

$$\sigma_u = (1, 0, 1), \sigma_v = (0, 1, 1), \sigma_{uu} = \sigma_{vv} = (0, 0, 0), \sigma_{uv} = (0, 0, 1), N = \frac{(-1, -1, 1)}{\sqrt{3}}.$$
(3)

Consequently

$$\mathbb{E} = 2, \mathbb{F} = 1, \mathbb{G} = 2, \mathbb{L} = \mathbb{N} = 0, \mathbb{M} = \frac{1}{\sqrt{3}}.$$
 (4)

Solving the equation

$$\det \begin{pmatrix} \mathbb{L} - \kappa_i \mathbb{E} & \mathbb{M} - \kappa_i \mathbb{F} \\ \mathbb{M} - \kappa_i \mathbb{F} & \mathbb{N} - \kappa_i \mathbb{G} \end{pmatrix} = 0$$
(5)

we obtain $\kappa_1 = \frac{1}{3\sqrt{3}}, \kappa_2 = -\frac{1}{\sqrt{3}}$. Now we have

$$\begin{pmatrix} \mathbb{L} - \kappa_1 \mathbb{E} & \mathbb{M} - \kappa_1 \mathbb{F} \\ \mathbb{M} - \kappa_1 \mathbb{F} & \mathbb{N} - \kappa_1 \mathbb{G} \end{pmatrix} = \frac{2}{3\sqrt{3}} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}.$$
 (6)

Thus

$$\frac{2}{3\sqrt{3}} \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} a_1\\ b_1 \end{pmatrix} = 0 \Longrightarrow t_1 = \frac{(1,1,2)}{\sqrt{6}}.$$
(7)

Similarly we have

$$t_2 = \frac{(1, -1, 0)}{\sqrt{2}}.$$
(8)

Finally we easily obtain

$$H = \frac{\kappa_1 + \kappa_2}{2} = -\frac{1}{3\sqrt{3}}, \qquad K = \kappa_1 \kappa_2 = -\frac{1}{9}.$$
 (9)

QUESTION 2. (5 PTS) Let $\sigma(u, v)$ be a surface patch. Assume that $\mathbb{E} = \mathbb{G}, \mathbb{F} = 0$.

- a) (3 PTS) Prove that $\sigma_{uu} + \sigma_{vv}$ is perpendicular to σ_u and σ_v .
- b) (2 PTS) Prove that if $\sigma_{uu} + \sigma_{vv} = 0$ then H = 0.
- 1

Proof.

a) We have

$$(\sigma_{uu} + \sigma_{vv}) \cdot \sigma_u = \sigma_{uu} \cdot \sigma_u + \sigma_{vv} \cdot \sigma_u$$

$$= \left(\frac{\mathbb{E}}{2}\right)_u + (\sigma_u \cdot \sigma_v)_v - \sigma_{uv} \cdot \sigma_v$$

$$= \left(\frac{\mathbb{E}}{2}\right)_u + \mathbb{F}_v - \left(\frac{\mathbb{G}}{2}\right)_u$$

$$= 0.$$

$$(10)$$

Similarly we have $(\sigma_{uu} + \sigma_{vv}) \cdot \sigma_v = 0.$

b) As $\sigma_{uu} + \sigma_{vv} = 0$ we have $\mathbb{L} + \mathbb{N} = 0$. Then using $\mathbb{E} = \mathbb{G}$, $\mathbb{F} = 0$ we have

$$H = \frac{\mathbb{E} \mathbb{N} + \mathbb{L} \mathbb{G} - 2 \mathbb{M} \mathbb{F}}{2 (\mathbb{E} \mathbb{G} - \mathbb{F}^2)} = \frac{\mathbb{E} (\mathbb{L} + \mathbb{N})}{2 \mathbb{E}^2} = 0.$$
(11)

Thus ends the proof.

QUESTION 3. (5 PTS) Let a surface S be such that $H = 0, K \neq 0$. Prove that its Gauss map \mathcal{G} is conformal. That is if σ is a surface patch for S and we take $\tilde{\sigma} := \mathcal{G} \circ \sigma$ as the surface patch for \mathbb{S}^2 , then there is a scalar function λ such that $\tilde{\mathbb{E}} = \lambda \mathbb{E}, \tilde{\mathbb{F}} = \lambda \mathbb{F}, \tilde{\mathbb{G}} = \lambda \mathbb{G}$.

(*Hint: Write* $-N_u = a_{11}\sigma_u + a_{12}\sigma_v, -N_v = a_{21}\sigma_u + a_{22}\sigma_v$ and recall the relations between a_{ij} and $\mathbb{E}, \mathbb{F}, \mathbb{G}, \mathbb{L}, \mathbb{M}, \mathbb{N}, H, K$. It also helps to write things in matrix form.)

Proof. The surface patch $\tilde{\sigma}$ is in fact just $N(u, v) = \mathcal{G}(\sigma(u, v))$. We write

$$-N_u = a_{11}\sigma_u + a_{12}\sigma_v, \qquad -N_v = a_{21}\sigma_u + a_{22}\sigma_v.$$
(12)

Then we have

$$\begin{pmatrix} \tilde{\mathbb{E}} & \tilde{\mathbb{F}} \\ \tilde{\mathbb{F}} & \tilde{\mathbb{G}} \end{pmatrix} = \begin{pmatrix} N_u \cdot N_u & N_u \cdot N_v \\ N_u \cdot N_v & N_v \cdot N_v \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}.$$
(13)

Now recalling $\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} = \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix}^{-1} \begin{pmatrix} \mathbb{L} & \mathbb{M} \\ \mathbb{M} & \mathbb{N} \end{pmatrix}$, we see that

$$\begin{pmatrix} \tilde{\mathbb{E}} & \tilde{\mathbb{F}} \\ \tilde{\mathbb{F}} & \tilde{\mathbb{G}} \end{pmatrix} = \begin{pmatrix} \mathbb{L} & \mathbb{M} \\ \mathbb{M} & \mathbb{N} \end{pmatrix} \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix}^{-1} \begin{pmatrix} \mathbb{L} & \mathbb{M} \\ \mathbb{M} & \mathbb{N} \end{pmatrix} = \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}^{2}.$$
(14)

Next since $0 = H = a_{11} + a_{22}$, we have

$$\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}^2 = \begin{pmatrix} a_{11}^2 + a_{21}a_{12} & a_{11}a_{21} + a_{22}a_{21} \\ a_{11}a_{12} + a_{22}a_{12} & a_{22}^2 + a_{12}a_{21} \end{pmatrix} = (a_{12}a_{21} - a_{11}a_{22}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
(15)

Consequently there holds

$$\begin{pmatrix} \tilde{\mathbb{E}} & \tilde{\mathbb{F}} \\ \tilde{\mathbb{F}} & \tilde{\mathbb{G}} \end{pmatrix} = -\left[\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right] \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix} = -K \begin{pmatrix} \mathbb{E} & \mathbb{F} \\ \mathbb{F} & \mathbb{G} \end{pmatrix},$$
(16)

as desired.

The following are more abstract or technical questions. They carry bonus points.

QUESTION 4. (BONUS, 5 PTS) Let S be a surface and $p_0 \in S$. Assume that there is a surface patch σ covering $p_0 = \sigma(u_0, v_0)$ such that at p_0 there holds $\mathbb{E} = \mathbb{G} = 1$, $\mathbb{F} = 0$ and $\mathbb{E}_u = \mathbb{E}_v = \mathbb{F}_u = \mathbb{F}_v = \mathbb{G}_u = \mathbb{G}_v = 0$.

a) (3 PTS) Prove that the Gaussian curvature at p is

$$K = \frac{\partial^2 \mathbb{F}}{\partial u \partial v} - \frac{1}{2} \frac{\partial^2 \mathbb{G}}{\partial u^2} - \frac{1}{2} \frac{\partial^2 \mathbb{E}}{\partial v^2}.$$
 (17)

- b) (1 PT) Let \tilde{S} be another surface such that there is a local isometry $f: S \mapsto \tilde{S}$. Prove that the Gaussian curvature at f(p) is $\tilde{K} = K$.
- c) (1 PT) Prove or disprove: $\tilde{H} = H$.

Proof.

a) We calculate

$$\frac{\partial^{2} \mathbb{F}}{\partial u \partial v} - \frac{1}{2} \frac{\partial^{2} \mathbb{G}}{\partial u^{2}} - \frac{1}{2} \frac{\partial^{2} \mathbb{E}}{\partial v^{2}} = (\sigma_{u} \cdot \sigma_{v})_{uv} - \left(\frac{\sigma_{v}^{2}}{2}\right)_{uu} - \left(\frac{\sigma_{u}^{2}}{2}\right)_{vv} \\
= (\sigma_{uuv} \cdot \sigma_{v} + \sigma_{uu} \cdot \sigma_{vv} + \sigma_{uv} \cdot \sigma_{uv} + \sigma_{u} \cdot \sigma_{uvv}) \\
- (\sigma_{uv} \cdot \sigma_{uv} + \sigma_{v} \cdot \sigma_{uuv}) - (\sigma_{uv} \cdot \sigma_{uv} + \sigma_{u} \cdot \sigma_{uvv}) \\
= \sigma_{uu} \cdot \sigma_{vv} - \sigma_{uv} \cdot \sigma_{uv}.$$
(18)

Now at p_0 write

$$\sigma_{uu} = a \,\sigma_u + b \,\sigma_v + \mathbb{L} \,N. \tag{19}$$

As $\mathbb{E} = \mathbb{G} = 1$, $\mathbb{F} = 0$ we see that σ_u, σ_v, N form an orthonormal basis.

Since $\mathbb{E}_u = 0$ we have $\sigma_{uu} \cdot \sigma_u = 0$ (at p_0 only!) so a = 0. Since $\mathbb{F}_u = \mathbb{G}_v = 0$ we have $\sigma_{uu} \cdot \sigma_v = 0$ so b = 0. Thus we have $\sigma_{uu} = \mathbb{L} N$.

Similarly we can prove $\sigma_{vv} = \mathbb{N} N$ and $\sigma_{uv} = \mathbb{M} N$. Consequently

$$\sigma_{uu} \cdot \sigma_{vv} - \sigma_{uv} \cdot \sigma_{uv} = \mathbb{L} \mathbb{N} - \mathbb{M}^2 = K$$
⁽²⁰⁾

and the proof ends.

- b) Let σ be a surface patch for S and let $\tilde{\sigma} := f \circ \sigma$. Then $\tilde{\sigma}$ is a surface patch for \tilde{S} and we have, thanks to f being a local isometry, $\tilde{\mathbb{E}} = \mathbb{E}, \tilde{\mathbb{F}} = \mathbb{F}, \tilde{\mathbb{G}} = \mathbb{G}$. Now $\tilde{K} = K$ immediately follows from (17).
- c) This is not correct. For example consider plane and cylinder. Note that when S is part of a plane, we can take an orthonormal basis and obtain $\mathbb{E} = \mathbb{G} = 1, \mathbb{F} = 0$. Thus the assumptions are satisfied.