Homework 6: Curvatures for Surfaces

(Total 20 pts + bonus 5 pts; Due Oct. 28 12pm)

Question 1. (10 PTs) Calculate $H, K, \kappa_{1}, \kappa_{2}, t_{1}, t_{2}$ at the point $(1,1,1)$ for the surface $z=x y$.

Question 2. (5 PTS) Let $\sigma(u, v)$ be a surface patch. Assume that $\mathbb{E}=\mathbb{G}, \mathbb{F}=0$.
a) (3 PTs) Prove that $\sigma_{u u}+\sigma_{v v}$ is perpendicular to σ_{u} and σ_{v}.
b) (2 PTS) Prove that if $\sigma_{u u}+\sigma_{v v}=0$ then $H=0$.

Question 3. (5 Pts) Let a surface S be such that $H=0, K \neq 0$. Prove that its Gauss map \mathcal{G} is conformal. That is if σ is a surface patch for S and we take $\tilde{\sigma}:=\mathcal{G} \circ \sigma$ as the surface patch for \mathbb{S}^{2}, then there is a scalar function λ such that $\tilde{\mathbb{E}}=\lambda \mathbb{E}, \tilde{\mathbb{F}}=\lambda \mathbb{F}, \tilde{\mathbb{G}}=\lambda \mathbb{G}$.
(Hint: Write $-N_{u}=a_{11} \sigma_{u}+a_{12} \sigma_{v},-N_{v}=a_{21} \sigma_{u}+a_{22} \sigma_{v}$ and recall the relations between $a_{i j}$ and $\mathbb{E}, \mathbb{F}, \mathbb{G}, \mathbb{L}, \mathbb{M}, \mathbb{N}, H, K$. It also helps to write things in matrix form.)

The following are more abstract or technical questions. They carry bonus points.
Question 4. (Bonus, 5 Pts) Let S be a surface and $p_{0} \in S$. Assume that there is a surface patch σ covering $p_{0}=\sigma\left(u_{0}, v_{0}\right)$ such that at p_{0} there holds $\mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$ and $\mathbb{E}_{u}=\mathbb{E}_{v}=\mathbb{F}_{u}=\mathbb{F}_{v}=\mathbb{G}_{u}=\mathbb{G}_{v}=0$.
a) (3 PTS) Prove that the Gaussian curvature at p is

$$
\begin{equation*}
K=\frac{\partial^{2} \mathbb{F}}{\partial u \partial v}-\frac{1}{2} \frac{\partial^{2} \mathbb{G}}{\partial u^{2}}-\frac{1}{2} \frac{\partial^{2} \mathbb{E}}{\partial v^{2}} \tag{1}
\end{equation*}
$$

b) (1 PT) Let \tilde{S} be another surface such that there is a local isometry $f: S \mapsto \tilde{S}$. Prove that the Gaussian curvature at $f(p)$ is $\tilde{K}=K$.
c) $(1 \mathrm{PT})$ Prove or disprove: $\tilde{H}=H$.

