Homework 6: Curvatures for Surfaces

(Total 20 pts + bonus 5 pts; Due Oct. 28 12pm)

QUESTION 1. (10 PTS) Calculate $H, K, \kappa_1, \kappa_2, t_1, t_2$ at the point (1, 1, 1) for the surface z = x y.

QUESTION 2. (5 PTS) Let $\sigma(u, v)$ be a surface patch. Assume that $\mathbb{E} = \mathbb{G}, \mathbb{F} = 0$.

- a) (3 PTS) Prove that $\sigma_{uu} + \sigma_{vv}$ is perpendicular to σ_u and σ_v .
- b) (2 PTS) Prove that if $\sigma_{uu} + \sigma_{vv} = 0$ then H = 0.

QUESTION 3. (5 PTS) Let a surface S be such that $H = 0, K \neq 0$. Prove that its Gauss map \mathcal{G} is conformal. That is if σ is a surface patch for S and we take $\tilde{\sigma} := \mathcal{G} \circ \sigma$ as the surface patch for \mathbb{S}^2 , then there is a scalar function λ such that $\tilde{\mathbb{E}} = \lambda \mathbb{E}, \tilde{\mathbb{F}} = \lambda \mathbb{F}, \tilde{\mathbb{G}} = \lambda \mathbb{G}$.

(*Hint: Write* $-N_u = a_{11}\sigma_u + a_{12}\sigma_v, -N_v = a_{21}\sigma_u + a_{22}\sigma_v$ and recall the relations between a_{ij} and $\mathbb{E}, \mathbb{F}, \mathbb{G}, \mathbb{L}, \mathbb{M}, \mathbb{N}, H, K$. It also helps to write things in matrix form.)

The following are more abstract or technical questions. They carry bonus points.

QUESTION 4. (BONUS, 5 PTS) Let S be a surface and $p_0 \in S$. Assume that there is a surface patch σ covering $p_0 = \sigma(u_0, v_0)$ such that at p_0 there holds $\mathbb{E} = \mathbb{G} = 1$, $\mathbb{F} = 0$ and $\mathbb{E}_u = \mathbb{E}_v = \mathbb{F}_u = \mathbb{F}_v = \mathbb{G}_u = \mathbb{G}_v = 0$.

a) (3 PTS) Prove that the Gaussian curvature at p is

$$K = \frac{\partial^2 \mathbb{F}}{\partial u \partial v} - \frac{1}{2} \frac{\partial^2 \mathbb{G}}{\partial u^2} - \frac{1}{2} \frac{\partial^2 \mathbb{E}}{\partial v^2}.$$
 (1)

- b) (1 PT) Let \tilde{S} be another surface such that there is a local isometry $f: S \mapsto \tilde{S}$. Prove that the Gaussian curvature at f(p) is $\tilde{K} = K$.
- c) (1 PT) Prove or disprove: $\tilde{H} = H$.