Homework 4: The First Fundamental Form

(Total 20 pts + bonus 5 pts; Due Oct. 14 12pm)

Question 1. (5 PTs) Calculate the first fundamental form of the surface

$$
\begin{equation*}
\sigma(u, v)=(3 \sin u \cos v, 2 \sin u \sin v, \cos u) . \tag{1}
\end{equation*}
$$

Question 2. (5 PTS) Consider the surface patch $\sigma(u, v)=(u \cos v, u \sin v, \ln (\cos v)+u)$. Let $u_{1}<u_{2}$ be arbitrary. Show that the arc length of the curve $\sigma(t, v)$ between $t=u_{1}$ and $t=u_{2}$ is independent of v.

Question 3. (10 pts) Let the first fundamental form for a surface patch be $\mathrm{d} u^{2}+(1+$ $\left.u^{2}\right) \mathrm{d} v^{2}$.
a) (8 PTS) Calculate the lengths of the three sides and the three angles of the curvilinear triangle bounded by images of $u=\frac{v^{2}}{2}, u=-\frac{v^{2}}{2}, v=1$.
b) (2 PTS) Prove that the area of the curvilinear triangle is greater than $1 / 3$.

The following are more abstract or technical questions. They carry bonus points.
Question 4. (Bonus, 5 Pts) Consider the surface of revolution $\sigma(u, v)=(f(u) \cos v$, $f(u) \sin v, u)$ where $f(u)>0$ and $v \in[0,2 \pi]$.
a) (2 PTS) Prove that it can always be parametrized so that the first fundamental form becomes $\mathbb{E}(v) \mathrm{d} u^{2}+\mathrm{d} v^{2}$.
b) (2 PTS) Find a conformal mapping between $\sigma(u, v)$ and the plane.
c) (1 PT) For what f is such a surface developable? Justify your claim.

