Homework 3: Differential Geometry of Curves

(Total 20 pts + bonus 5 pts; Due Sept. 30 12pm)
Question 1. (10 PTS) Calculate T, N, B, κ, τ of the curve $x(t)=\left(t, t^{2}, t^{4}\right)$ at the point $(1,1,1)$.

Question 2. (5 PTs) Let f be a smooth function. Calculate the curvature and the torsion of the curve that is the intersection of $x=y$ and $z=f(x)$.

QUESTION 3. (5 PTS) Let $x(s)$ be a curve with arc length parametrization, and satisfies $\|x(s)\| \leqslant\left\|x\left(s_{0}\right)\right\| \leqslant 1$ for all s sufficiently close to x_{0}. Prove $\kappa\left(s_{0}\right) \geqslant 1$. (Hint: Consider $f(s)=\|x(s)\|^{2}$. Then $f(s)$ has a local maximum at s_{0}. Calculate $\left.f^{\prime \prime}\left(s_{0}\right)\right)$

The following are more abstract or technical questions. They carry bonus points.
Question 4. (Bonus, 5 PTs) Let $x(t)$ be a smooth plane curve. Assume that the chord length between $x\left(t_{1}\right), x\left(t_{2}\right)$ depends only on $\left|t_{1}-t_{2}\right|$ for all $t_{1}, t_{2} \in(\alpha, \beta)$, that is there is some function F such that $\left\|x\left(t_{1}\right)-x\left(t_{2}\right)\right\|=F\left(\left|t_{1}-t_{2}\right|\right)$ for all $t_{1}, t_{2} \in(\alpha, \beta)$. Prove that $x(t)$ is part of either a circle or a straightline. (Hint: First from $\|x(t+\delta t)-x(t)\|=F(\delta t)$ show that $\left\|x^{\prime}(t)\right\|=$ constant for every t. Next apply Taylor expansion to $\|x(t+\delta t)-x(t)\|^{2}=F(\delta t)^{2}$ to reach the conclusion.)

