HOMEWORK 3: DIFFERENTIAL GEOMETRY OF CURVES

(Total 20 pts + bonus 5 pts; Due Sept. 30 12pm)

QUESTION 1. (10 PTS) Calculate T, N, B, κ , τ of the curve $x(t) = (t, t^2, t^4)$ at the point (1, 1, 1).

QUESTION 2. (5 PTS) Let f be a smooth function. Calculate the curvature and the torsion of the curve that is the intersection of x = y and z = f(x).

QUESTION 3. (5 PTS) Let x(s) be a curve with arc length parametrization, and satisfies $||x(s)|| \leq ||x(s_0)|| \leq 1$ for all s sufficiently close to x_0 . Prove $\kappa(s_0) \geq 1$. (Hint: Consider $f(s) = ||x(s)||^2$. Then f(s) has a local maximum at s_0 . Calculate $f''(s_0)$)

The following are more abstract or technical questions. They carry bonus points.

QUESTION 4. (BONUS, 5 PTS) Let x(t) be a smooth plane curve. Assume that the chord length between $x(t_1), x(t_2)$ depends only on $|t_1 - t_2|$ for all $t_1, t_2 \in (\alpha, \beta)$, that is there is some function F such that $||x(t_1) - x(t_2)|| = F(|t_1 - t_2|)$ for all $t_1, t_2 \in (\alpha, \beta)$. Prove that x(t) is part of either a circle or a straightline. (Hint: First from $||x(t+\delta t) - x(t)|| = F(\delta t)$ show that ||x'(t)|| = constant for every t. Next apply Taylor expansion to $||x(t+\delta t) - x(t)||^2 = F(\delta t)^2$ to reach the conclusion.)