Solutions to Homework 1: Prerequisites

(Total 20 pts + bonus pts; Due Sept. 16 12pm)

Question 1. (5 PTs) Let $f, g: \mathbb{R} \mapsto \mathbb{R}^{3}$ be differentiable. Prove
i. $(f(t) \cdot g(t))^{\prime}=f^{\prime}(t) \cdot g(t)+f(t) \cdot g^{\prime}(t)$;
ii. $(f(t) \times g(t))^{\prime}=f^{\prime}(t) \times g(t)+f(t) \times g^{\prime}(t)$;

Proof.

i. We have

$$
\begin{align*}
(f(t) \cdot g(t))^{\prime}= & {\left[f_{1}(t) g_{1}(t)+f_{2}(t) g_{2}(t)+f_{3}(t) g_{3}(t)\right]^{\prime} } \\
= & f_{1}^{\prime}(t) g_{1}(t)+f_{1}(t) g_{1}^{\prime}(t) \\
& +f_{2}^{\prime}(t) g_{2}(t)+f_{2}(t) g_{2}^{\prime}(t) \\
& +f_{3}^{\prime}(t) g_{3}(t)+f_{3}(t) g_{3}^{\prime}(t) \\
= & f^{\prime}(t) \cdot g(t)+f(t) \cdot g^{\prime}(t) . \tag{1}
\end{align*}
$$

ii. We have

$$
\begin{aligned}
(f(t) \times g(t))^{\prime} & =\left(\begin{array}{l}
f_{2}(t) g_{3}(t)-f_{3}(t) g_{2}(t) \\
f_{3}(t) g_{1}(t)-f_{1}(t) g_{3}(t) \\
f_{1}(t) g_{2}(t)-f_{2}(t) g_{1}(t)
\end{array}\right)^{\prime} \\
& =\left(\begin{array}{l}
f_{2}^{\prime}(t) g_{3}(t)+f_{2}(t) g_{3}^{\prime}(t)-f_{3}^{\prime}(t) g_{2}(t)-f_{3}(t) g_{2}^{\prime}(t) \\
f_{3}^{\prime}(t) g_{1}(t)+f_{3}(t) g_{1}^{\prime}(t)-f_{1}^{\prime}(t) g_{3}(t)-f_{1}(t) g_{3}^{\prime}(t) \\
f_{1}^{\prime}(t) g_{2}(t)+f_{1}(t) g_{2}^{\prime}(t)-f_{2}^{\prime}(t) g_{1}(t)-f_{2}(t) g_{1}^{\prime}(t)
\end{array}\right) \\
& =\left(\begin{array}{l}
f_{2}^{\prime}(t) g_{3}(t)-f_{3}^{\prime}(t) g_{2}(t) \\
f_{3}^{\prime}(t) g_{1}(t)-f_{1}^{\prime}(t) g_{3}(t) \\
f_{1}^{\prime}(t) g_{2}(t)-f_{2}^{\prime}(t) g_{1}(t)
\end{array}\right)+\left(\begin{array}{c}
f_{2}(t) g_{3}^{\prime}(t)-f_{3}(t) g_{2}^{\prime}(t) \\
f_{3}(t) g_{1}^{\prime}(t)-f_{1}(t) g_{3}^{\prime}(t) \\
f_{1}(t) g_{2}^{\prime}(t)-f_{2}(t) g_{1}^{\prime}(t)
\end{array}\right) \\
& =f^{\prime}(t) \times g(t)+f(t) \times g^{\prime}(t) .
\end{aligned}
$$

Differential Geometry of Curves \& Surfaces

Question 2. (5 PTS) Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be defined as $f(x):=(A x) \cdot x$, where $A=\left(\begin{array}{cc}4 & 5 \\ 6 & 7\end{array}\right)$. Calculate the Taylor expansion of f to the second order at $(1,1)$.

Solution. We have

$$
\begin{align*}
f\left(x_{1}, x_{2}\right) & =\left[A\binom{x_{1}}{x_{2}}\right] \cdot\binom{x_{1}}{x_{2}} \\
& =\binom{4 x_{1}+5 x_{2}}{6 x_{1}+7 x_{2}} \cdot\binom{x_{1}}{x_{2}} \\
& =4 x_{1}^{2}+11 x_{1} x_{2}+7 x_{2}^{2} . \tag{2}
\end{align*}
$$

Now we calculate

$$
\begin{aligned}
f(1,1) & =22 \\
\frac{\partial f}{\partial x_{1}}(1,1) & =19 \\
\frac{\partial f}{\partial x_{2}}(1,1) & =25 \\
\frac{\partial^{2} f}{\partial x_{1}^{2}}(1,1) & =8 \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(1,1) & =11 \\
\frac{\partial^{2} f}{\partial x_{2}^{2}}(1,1) & =14
\end{aligned}
$$

Therefore the Taylor expansion to order two is

$$
\begin{equation*}
22+19\left(x_{1}-1\right)+25\left(x_{2}-1\right)+\frac{1}{2} 8\left(x_{1}-1\right)^{2}+11\left(x_{1}-1\right)\left(x_{2}-1\right)+\frac{1}{2} 14\left(x_{2}-1\right)^{2}+R \tag{3}
\end{equation*}
$$

which also equals

$$
22+\binom{19}{25} \cdot\binom{x_{1}-1}{x_{2}-1}+\frac{1}{2}\left[\left(\begin{array}{cc}
8 & 11 \tag{4}\\
11 & 14
\end{array}\right)\binom{x_{1}-1}{x_{2}-1}\right] \cdot\binom{x_{1}-1}{x_{2}-1}+R .
$$

Note that for this particular function f we actually have $R=0$.

Question 3. (5 PTs) Let $f: \mathbb{R} \mapsto \mathbb{R}$ be differentiable and non-negative with $f(0)=1$. Further assume

$$
\begin{equation*}
f^{\prime}(t) \leqslant t f(t) \tag{5}
\end{equation*}
$$

for all $t \geqslant 0$. Prove that

$$
\begin{equation*}
f(t) \leqslant \exp \left(t^{2} / 2\right) \tag{6}
\end{equation*}
$$

for all $t \geqslant 0$.

Proof. Multiply both sides by $e^{-t^{2} / 2}$ and move the right hand side to the left hand side, we have

$$
\begin{equation*}
\left[e^{-t^{2} / 2} f\right]^{\prime}=e^{-t^{2} / 2} f^{\prime}-t e^{-t^{2} / 2} f \leqslant 0 . \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
e^{-t^{2} / 2} f(t)-e^{-0^{2} / 2} f(0) \leqslant 0 \tag{8}
\end{equation*}
$$

which gives

$$
\begin{equation*}
f(t) \leqslant f(0) e^{t^{2} / 2}=e^{t^{2} / 2} \tag{9}
\end{equation*}
$$

Thus ends the proof.

Differential Geometry of Curves \& Surfaces

Question 4. (5 PTS) Let $f(t): \mathbb{R} \mapsto \mathbb{R}^{3}$ be nonzero and smooth ${ }^{1}$. Then $\|f(t)\|$ is a constant $\Longleftrightarrow f^{\prime}(t) \cdot f(t)=0$.

Note. To prove $A \Longleftrightarrow B$, you need to prove two things:

- \Longrightarrow : if statement A is true then statement B is true;
- \Longleftarrow : if statement B is true then statement A is true.

Proof.

- \Longrightarrow. Assume $\|f(t)\|$ is constant. Then so is $\|f(t)\|^{2}=f(t) \cdot f(t)$. Consequently we have

$$
\begin{equation*}
0=[f(t) \cdot f(t)]^{\prime}=2 f^{\prime}(t) \cdot f(t) \tag{10}
\end{equation*}
$$

- \Longleftarrow. Since

$$
\begin{equation*}
0=f^{\prime}(t) \cdot f(t)=\frac{1}{2}[f(t) \cdot f(t)]^{\prime} \tag{11}
\end{equation*}
$$

we have $\|f(t)\|^{2}$ is a constant. Thus so is $\|f(t)\|$.

[^0]The following are more abstract or technical questions. They carry bonus points.

Question 5. (Bonus, 5 PTs) Let $f(t): \mathbb{R} \mapsto \mathbb{R}^{3}$ be nonzero and smooth. Then
i. (2 PTS) $f(t)$ has fixed direction $\Longleftrightarrow f(t) \times f^{\prime}(t)=0$;
ii. (3 PTS) $f(t) \perp v$ for some constant vector $v \Longleftrightarrow\left(f(t) \times f^{\prime}(t)\right) \cdot f^{\prime \prime}(t)=0$.

Proof.

i.

- \Longrightarrow. Let v be the fixed direction. Then we have $f(t) \times v=0$. Taking derivative we have $f^{\prime}(t) \times v=0$. Consequently $f(t) \| f^{\prime}(t)$ and $f(t) \times f^{\prime}(t)=0$.
- \Longleftarrow. Assume $f(t) \times f^{\prime}(t)=0$ for all t. Let $h(t):=\frac{f(t)}{\|f(t)\|}$. Then we have $f(t)=h(t)\|f(t)\|$ which gives

$$
\begin{equation*}
f^{\prime}(t)=h^{\prime}(t)\|f(t)\|+h(t) \frac{\mathrm{d}}{\mathrm{~d} t}\|f(t)\| \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
0=f(t) \times f^{\prime}(t)=\left(h(t) \times h^{\prime}(t)\right)\|f(t)\|^{2} . \tag{13}
\end{equation*}
$$

As $f(t)$ is nonzero, we conclude $h(t) \times h^{\prime}(t)=0$ for all t. If $h^{\prime}(t) \neq 0$, then we have $h^{\prime}(t) \perp h(t)$ and $\left\|h(t) \times h^{\prime}(t)\right\|=\left\|h^{\prime}(t)\right\| \neq 0$. Therefore $h^{\prime}(t)=0$ and consequently $h(t)$ is a constant unit vector. In other words $f(t)$ has fixed direction.
ii.

- \Longrightarrow. First if $f(t) \times f^{\prime}(t)=0$ then the conclusion holds automarically. In the following we assume $f(t) \times f^{\prime}(t) \neq 0$. We have $f(t) \cdot v=0$. It follows then

$$
\begin{equation*}
f^{\prime}(t) \cdot v=[f(t) \cdot v]^{\prime}=0, \quad f^{\prime \prime}(t) \cdot v=[f(t) \cdot v]^{\prime \prime}=0 . \tag{14}
\end{equation*}
$$

As $f(t) \times f^{\prime}(t) \perp f(t), f^{\prime}(t)$, there holds $f(t) \times f^{\prime}(t) \| v$ and consequently $\left(f(t) \times f^{\prime}(t)\right) \cdot f^{\prime \prime}(t)=0$.

- \Longleftarrow. Let $u(t):=f(t) \times f^{\prime}(t)$. We calculate

$$
\begin{equation*}
u^{\prime}(t)=f(t) \times f^{\prime \prime}(t) . \tag{15}
\end{equation*}
$$

Clearly $u^{\prime}(t) \perp f(t)$. On the other hand $\left(f^{\prime \prime}(t) \times f(t)\right) \cdot f^{\prime}(t)=\left(f(t) \times f^{\prime}(t)\right)$. $f^{\prime \prime}(t)=0$ which gives $u^{\prime}(t) \perp f^{\prime}(t)$. Now if $u(t)=0$, then $u(t) \times u^{\prime}(t)=0$, and if $u(t) \neq 0$, we must have $u^{\prime}(t) \| u(t)$ and again $u(t) \times u^{\prime}(t)=0$. By part i. of this problem we have $u(t) \equiv v$ is a constant vector. Thus $f(t) \cdot v=0$ for all t and the proof ends.

[^0]: 1. In 348 "smooth" means there is no need to prove differentiability or integrability, no mater how many derivatives or integrals are being taken.
