Math 348 Fall 2016

SOLUTIONS TO HOMEWORK 1: PREREQUISITES

(Total 20 pts + bonus pts; Due Sept. 16 12pm)

QUESTION 1. (5 PTS) Let f, g: R— R? be differentiable. Prove

i (f(t)-g)'=f'1t)-gt)+ f(t)-g'(t);

i (f(t) > g(t))" = f'(t) x g(t) + f(t) x g'(t)

Proof.

1. We have
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Differential Geometry of Curves & Surfaces

QUESTION 2. (5 PTS) Let f: R* — R be defined as f(z) :

=(Azx) -z, whereAz(‘é ?)
Calculate the Taylor expansion of f to the second order at (1,1).

Solution. We have

fom = [4(2)] (%)
()

= 423+ 112129+ 7 23. (2)
Now we calculate
F(1,1) = 22
%(1,1) 19
5%(1,1) ~ 2%
%(1,1) - 3
a51281;2(1,1) -1
%(1,1) ~ 14

Therefore the Taylor expansion to order two is

22—|—19(x1—1)—|—25(z2—1)+%8(x1—1)2—|—11(x1—1)(a:z—l)—{—%lél(xg—l)z—{—R (3)

which also equals

2o ) (B0 a0 ) () (B0 )

Note that for this particular function f we actually have R=0.
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QUESTION 3. (5 PTS) Let f:R— 1R be differentiable and non-negative with f(0)=1. Further
assume

f)<tf(t) (5)
for all t>0. Prove that

f(t) <exp(t?/2) (6)

for all t>0.

Proof. Multiply both sides by e~ /2 and move the right hand side to the left hand side, we

have
N e S A (7)
Therefore
e P2 f(t) — e 2 £(0)<0 (8)
which gives
F(£) < F(0) 2=l (9)
Thus ends the proof. O



Differential Geometry of Curves & Surfaces

QUESTION 4. (5 PTS) Let f(t):R— R3? be nonzero and smooth'. Then || f(t)| is a constant
= f(t) f(t)=0.

Note. To prove A<= B, you need to prove two things:
o —: if statement A is true then statement B is true;

o < if statement B is true then statement A is true.

Proof.

e —. Assume ||f(t)|| is constant. Then so is || f(¢)||> = f(¢) - f(t). Consequently we

have
O0=[f(8)- O =2F(t)- f(1). (10)
e <. Since
0=J(t)- (1) =5 [F() F(O) (11)
we have || f(t)||? is a constant. Thus so is || f(t)]]. O

1. In 348 “smooth” means there is no need to prove differentiability or integrability, no mater how many derivatives
or integrals are being taken.
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(The following are more abstract or technical questions. They carry bonus points. )

QUESTION 5. (BoNUS, 5 PTS) Let f(t): R+— R? be nonzero and smooth. Then
i. (2 P1S) f(t) has fized direction < f(t) x f'(t)=
ii. (3 PTS) f(t)Lv for some constant vector v <= (f(t) x f'(t))- f"(t)=0.

Proof.

1.

ii.

—. Let v be the fixed direction. Then we have f(t) x v=0. Taking derivative
we have f'(t) x v=0. Consequently f(¢)| f'(t) and f(t) x f'(t)=

<. Assume f(t) x f'(t) = 0 for all t. Let h(t) := Hfggll' Then we have
£(6) = h(t) | £(2)| which gives

&) =n'@) 1F @)1+ h(t)%ﬂf(t)!\ (12)
and

= [(t) x f'(t) = (h(t) x h'()) [ F (D). (13)

As f(t) is nonzero, we conclude h(t) x h/(t) = 0 for all ¢t. If A/(t) # 0, then
we have h/(t) Lh(t) and ||h(t) x R'(t)|| = [|R'(t)|| # 0. Therefore h'(t) =0 and
consequently h(t) is a constant unit vector. In other words f(t) has fixed
direction.

—. First if f(¢) x f'(t) =0 then the conclusion holds automarically. In the
following we assume f(t) x f'(t) #0. We have f(t)-v=0. It follows then

P o= [FE) o =0, ) v=[f()-0]" =0, (14)
As f(t) x fl()Lf(t ) f'(t), there holds f(t) x f'(t) || v and consequently
t

(@) > f(@)- (1)
<. Let u(t) := f(t) x f’(t). We calculate

u'(t) = f(t) x f(t). (15)
Clearly w'(t) L f(t). On the other hand (f"(t) x f(t))- f'(t) = (f(t) x f'(t)) -
f"(t) =0 which gives u/'(t) L f'(t). Now if u(t) =0, then u(t) x u'(t) =0, and if
u(t) #0, we must have u'(t) || u(t) and again u(t) x u'(t) =0. By part i. of this
problem we have u(t) =v is a constant vector. Thus f(t)-v =0 for all ¢ and
the proof ends.
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