Homework 1: Prerequisites

(Total 20 pts + bonus pts; Due Sept. 16 12pm)

Question 1. (5 PTS) Let $f, g: \mathbb{R} \mapsto \mathbb{R}^{3}$ be differentiable. Prove
i. $(f(t) \cdot g(t))^{\prime}=f^{\prime}(t) \cdot g(t)+f(t) \cdot g^{\prime}(t)$;
ii. $(f(t) \times g(t))^{\prime}=f^{\prime}(t) \times g(t)+f(t) \times g^{\prime}(t)$;

Question 2. (5 PTS) Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be defined as $f(x):=(A x) \cdot x$, where $A=\left(\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right)$. Calculate the Taylor expansion of f to the second order at $(1,1)$.

QUESTION 3. (5 PTs) Let $f: \mathbb{R} \mapsto \mathbb{R}$ be differentiable and non-negative with $f(0)=1$. Further assume

$$
\begin{equation*}
f^{\prime}(t) \leqslant t f(t) \tag{1}
\end{equation*}
$$

for all $t \geqslant 0$. Prove that

$$
\begin{equation*}
f(t) \leqslant \exp \left(t^{2} / 2\right) \tag{2}
\end{equation*}
$$

for all $t \geqslant 0$.
Question 4. (5 PTs) Let $f(t): \mathbb{R} \mapsto \mathbb{R}^{3}$ be nonzero and smooth ${ }^{1}$. Then $\|f(t)\|$ is a constant $\Longleftrightarrow f^{\prime}(t) \cdot f(t)=0$.

Note. To prove $A \Longleftrightarrow B$, you need to prove two things:

- \Longrightarrow : if statement A is true then statement B is true;
- \Longleftarrow : if statement B is true then statement A is true.

The following are more abstract or technical questions. They carry bonus points.
Question 5. (Bonus, 5 PTs) Let $f(t): \mathbb{R} \mapsto \mathbb{R}^{3}$ be nonzero and smooth. Then
i. (2 PTS) $f(t)$ has fixed direction $\Longleftrightarrow f(t) \times f^{\prime}(t)=0$;
ii. (3 PTS) $f(t) \perp v$ for some constant vector $v \Longleftrightarrow\left(f(t) \times f^{\prime}(t)\right) \cdot f^{\prime \prime}(t)=0$.

[^0]
[^0]: 1. In 348 "smooth" means there is no need to prove differentiability or integrability, no mater how many derivatives or integrals are being taken.
