REVIEW FOR FINAL: THEORY OF SURFACES

TABLE OF CONTENTS

REVIEW FOR FINAL: THEORY OF SURFACES	 1
1. Q&A	 2

Suggestion: preparation for the final.

- 1. Go through lecture notes;
- 2. Re-do the two midterms;
- 3. Re-do all homeworks;
- 4. Go through textbook and work on exercises in it.

1. Q&A

• Signed curvature for plane curves.

It is exactly the geodesic curvature of the curve. Note that the normal curvature of any plane curve is zero.

• Q2 of HW7.

QUESTION. Let γ be a curve on S. Let w, \tilde{w} be unit vector fields along γ . Further assume that at every $p \in \gamma$, there holds the angle between w, \tilde{w} , $\angle(w, \tilde{w}) = \theta_0$, a constant. Prove or disprove: w is parallel along γ if and only if \tilde{w} is parallel along γ .

Solution. The claim is true. We parametrize γ by some x(t) and simply write w(t), $\tilde{w}(t)$. We discuss two cases.

- 1. $\angle(w, \tilde{w}) = 0$ or π . Then $\tilde{w} = w$ or -w. Clearly $\nabla_{\gamma} \tilde{w} = 0$.
- 2. Otherwise. Notice that this means $\{w, \tilde{w}\}$ for a basis for the tangent plane. By assumption we have $w \cdot \tilde{w} = \text{constant}$. Therefore

$$w' \cdot \tilde{w} + w \cdot \tilde{w}' = 0. \tag{1}$$

Since $\nabla_{\gamma} w = 0$, we have $w' \perp \tilde{w}$. Therefore $\tilde{w}' \cdot w = 0$. On the other hand, as $\|\tilde{w}\| = 1$ we have $\tilde{w}' \cdot \tilde{w} = 0$. Thus $\tilde{w} \parallel N$ and consequently $\nabla_{\gamma} \tilde{w} = 0$.

- How to show a curve is geodesic?
 - A curve γ is a geodesic when its unit tangent vector stays parallel:

$$\nabla_{\gamma}T = 0. \tag{2}$$

• Thus if $T = \alpha \sigma_u + \beta \sigma_v$, $\nabla_{\gamma} T = 0$ becomes

$$\alpha' + (\alpha, \beta) \left(\Gamma_{ij}^{1}\right) \left(\begin{array}{c} u'\\ v' \end{array}\right) = 0, \qquad \beta' + (\alpha, \beta) \left(\Gamma_{ij}^{2}\right) \left(\begin{array}{c} u'\\ v' \end{array}\right) = 0. \tag{3}$$

• Let γ be given as $\sigma(u(t), v(t))$.

- Case 1. t is arc length. Then γ is a geodesic if and only if

$$u'' + (u', v') (\Gamma_{ij}^1) \begin{pmatrix} u' \\ v' \end{pmatrix} = 0, \qquad v'' + (u', v') (\Gamma_{ij}^2) \begin{pmatrix} u' \\ v' \end{pmatrix} = 0.$$
(4)

- Case 2. t may not be arc length. Then calculate

$$T = \frac{u'}{\sqrt{\mathbb{E} u'^2 + 2 \mathbb{F} u' v' + \mathbb{G} v'^2}} \sigma_u + \frac{v'}{\sqrt{\mathbb{E} u'^2 + 2 \mathbb{F} u' v' + \mathbb{G} v'^2}} \sigma_v.$$
(5)

Thus $\nabla_{\gamma} T = 0$ becomes

$$\left(\frac{u'}{\sqrt{\mathbb{E}\,u'^2 + 2\,\mathbb{F}\,u'\,v' + \mathbb{G}\,v'^2}}\right)' + \frac{(u',v')(\Gamma^1_{ij})\left(\frac{u'}{v'}\right)}{\sqrt{\mathbb{E}\,u'^2 + 2\,\mathbb{F}\,u'\,v' + \mathbb{G}\,v'^2}} = 0, \quad (6)$$

$$\left(\frac{v'}{\sqrt{\mathbb{E}\,u'^2 + 2\,\mathbb{F}\,u'\,v' + \mathbb{G}\,v'^2}}\right) + \frac{(u',v')(1_{ij})\left(\frac{u}{v'}\right)}{\sqrt{\mathbb{E}\,u'^2 + 2\,\mathbb{F}\,u'\,v' + \mathbb{G}\,v'^2}} = 0.$$
(7)

• Q3 of Midterm 2.

QUESTION. Consider the same surface patch as in Questions 1 and 2, $\sigma(u, v) := (u, v, e^{uv})$.

- a) (3 PTS) Calculate the Christoffel symbols Γ_{ij}^k .
- b) (2 PTS) Is u = 0 a geodesic? Justify your claim.

Solution.

a) We calculate

$$\sigma_u \times \sigma_v = (-e^{uv}v, -e^{uv}u, 1). \tag{8}$$

Therefore

$$\begin{pmatrix} 0\\0\\e^{uv}v^2 \end{pmatrix} = \sigma_{uu} = \Gamma_{11}^1 \begin{pmatrix} 1\\0\\e^{uv}v \end{pmatrix} + \Gamma_{11}^2 \begin{pmatrix} 0\\1\\e^{uv}u \end{pmatrix} + l \begin{pmatrix} -e^{uv}v\\-e^{uv}u\\1 \end{pmatrix}.$$
(9)

We see that $\Gamma_{11}^1 = l e^{uv} v$, $\Gamma_{11}^2 = l e^{uv} u$. Substituting into the third equation we have

$$e^{uv}v^2 = l e^{2uv}v^2 + l e^{2uv}u^2 + l \Longrightarrow l = \frac{e^{uv}v^2}{e^{2uv}(u^2 + v^2) + 1}.$$
 (10)

Therefore

$$\Gamma_{11}^{1} = \frac{e^{2uv} v^{3}}{e^{2uv} (u^{2} + v^{2}) + 1}, \qquad \Gamma_{11}^{2} = \frac{e^{2uv} v^{2} u}{e^{2uv} (u^{2} + v^{2}) + 1}.$$
(11)

Next we have

$$\begin{pmatrix} 0\\ 0\\ e^{uv}(1+uv) \end{pmatrix} = \sigma_{uv} = \Gamma_{12}^1 \begin{pmatrix} 1\\ 0\\ e^{uv}v \end{pmatrix} + \Gamma_{12}^2 \begin{pmatrix} 0\\ 1\\ e^{uv}u \end{pmatrix} + m \begin{pmatrix} -e^{uv}v\\ -e^{uv}u\\ 1 \end{pmatrix}$$
(12)

which gives

$$\Gamma_{12}^{1} = \frac{e^{2uv} \left(1 + u v\right) v}{e^{2uv} \left(u^{2} + v^{2}\right) + 1}, \qquad \Gamma_{12}^{2} = \frac{e^{2uv} \left(1 + u v\right) u}{e^{2uv} \left(u^{2} + v^{2}\right) + 1}.$$
(13)

Finally we calculate

$$\begin{pmatrix} 0\\0\\e^{uv}u^2 \end{pmatrix} = \sigma_{vv} = \Gamma_{22}^1 \begin{pmatrix} 1\\0\\e^{uv}v \end{pmatrix} + \Gamma_{22}^2 \begin{pmatrix} 0\\1\\e^{uv}u \end{pmatrix} + n \begin{pmatrix} -e^{uv}v\\-e^{uv}u\\1 \end{pmatrix}$$
(14)

which gives

$$\Gamma_{22}^{1} = \frac{e^{2uv} v u^{2}}{e^{2uv} (u^{2} + v^{2}) + 1}, \qquad \Gamma_{22}^{2} = \frac{e^{2uv} u^{3}}{e^{2uv} (u^{2} + v^{2}) + 1}.$$
(15)

b) We parametrize u = 0 as u(t) = 0, v(t) = t. Note that $x(t) := \sigma(u(t), v(t)) = (0, t, 1)$ is arc length parametrized.

Next along u = 0, we have

$$\Gamma_{11}^{1} = \frac{v^{3}}{1+v^{2}}, \quad \Gamma_{11}^{2} = 0,$$

$$\Gamma_{12}^{1} = \frac{v}{1+v^{2}}, \quad \Gamma_{12}^{2} = 0,$$

$$\Gamma_{22}^{1} = 0, \qquad \Gamma_{22}^{2} = 0.$$
(16)

Therefore the geodesic equations are satisfied along u = 0:

$$0 + (0 \ 1) \left(\begin{array}{cc} \frac{v^3}{1+v^2} & 0^1 \\ 0^1 & 0^1 \end{array} \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = 0, \tag{17}$$

$$0 + (0 \ 1) \begin{pmatrix} 0 \ 0 \\ 0 \ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0.$$

$$(18)$$

So u = 0 is a geodesic.

- Developable surface.
 - Intuition. A surface that can be "flattened" without stretching or squeezing. A surface that can have a faithful plane map.
 - How to check? K = 0.
- Homework 9.

QUESTION 1. (5 PTS) Let S be a regular, orientable, compact surface with positive Gaussian curvature: $K > K_{\min} > 0$. Prove that the surface area of S is less than $4\pi/K_{\min}$.

Proof. Take any simple closed curve γ on S. γ divides S into two regions Ω_1, Ω_2 . Let γ be oriented such that Ω_1 is its interior. Then by Gauss-Bonnet theorem

$$\int_{\Omega_1} K \,\mathrm{d}S + \int_{\gamma} \kappa_g \,\mathrm{d}s = 2\,\pi, \qquad \int_{\Omega_2} K \,\mathrm{d}S + \int_{-\gamma} \kappa_g \,\mathrm{d}s = 2\,\pi \tag{19}$$

where $-\gamma$ is γ with the opposite orientation. Since

$$\int_{-\gamma} \kappa_g \,\mathrm{d}s = -\int_{\gamma} \kappa_g \,\mathrm{d}s \tag{20}$$

we have

$$4\pi = \int_{S} K \,\mathrm{d}S \geqslant \int_{S} K_{\min} \,\mathrm{d}S \tag{21}$$

and the conclusion follows.

QUESTION 2. (5 PTS) Let S be a compact oriented surface that can be smoothly deformed into a sphere. Let γ be a simple closed geodesic separating S into two regions A, B. Let $\mathcal{G}: S \mapsto \mathbb{S}^2$ be the Gauss map. Prove that $\mathcal{G}(A)$ and $\mathcal{G}(B)$ have the same area.

Proof. Since \mathbb{S}^2 taking away one point can be covered by one single surface patch, so can S. Let $\sigma(u, v)$ be such a surface patch for S. Then we have

$$\int_{S} K \,\mathrm{d}S = \int_{U} K(u, v) \sqrt{\mathbb{E} \,\mathbb{G} - \mathbb{F}^2} \,\mathrm{d}u \,\mathrm{d}v. \tag{22}$$

Now let U_A, U_B be such that $\sigma(U_A) = A, \sigma(U_B) = B$ (maybe missing one point). Denote $N(u, v) := \mathcal{G}(\sigma(u, v))$. Then we have

Area of
$$\mathcal{G}(A) = \int_{U_A} ||N_u \times N_v|| \,\mathrm{d}u \,\mathrm{d}v.$$
 (23)

Recalling

$$-N_u = a_{11}\sigma_u + a_{12}\sigma_v, \qquad -N_v = a_{21}\sigma_u + a_{22}\sigma_v, \tag{24}$$

we have

$$N_u \times N_v = \det \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \sigma_u \times \sigma_v = K \sigma_u \times \sigma_v.$$
(25)

Consequently

$$\int_{U_A} \|N_u \times N_v\| \, \mathrm{d}u \, \mathrm{d}v = \int_{U_A} K \|\sigma_u \times \sigma_v\| \, \mathrm{d}u \, \mathrm{d}v$$
$$= \int_{U_A} K(u, v) \sqrt{\mathbb{E} \mathbb{G} - \mathbb{F}^2} \, \mathrm{d}u \, \mathrm{d}v$$
$$= \int_A K \, \mathrm{d}S$$
$$= 2 \pi - \int_{\gamma} \kappa_g \, \mathrm{d}s = 2 \pi.$$
(26)

Similarly we have Area of $\mathcal{G}(B) = 2\pi$.

QUESTION 3. Let S be a developable surface. Let γ be a curve on S. Let $\tilde{\gamma}$ be the curve corresponding to γ on the plane that is the "flattened" S. Prove or disprove: The geodesic curvature of γ and the signed curvature of $\tilde{\gamma}$ are the same at corresponding points.

Solution. We prove that the claim is true.

Let $\sigma(u, v): U \mapsto S$ a local isometry from the plane to S. Clearly $\sigma(u, v)$ can serve as a surface patch. Furthermore we have $\mathbb{E} = \mathbb{G} = 1, \mathbb{F} = 0$ and consequently all $\Gamma_{ij}^k = 0$. Note that this implies the surface normal

$$N = \sigma_u \times \sigma_v, \tag{27}$$

and that $\sigma_{uu}, \sigma_{uv}, \sigma_{vv} \parallel N$.

Now let (u(s), v(s)) be an arc length parametrization of $\tilde{\gamma}$. We then see that $x(s) := \sigma(u(s), v(s))$ is an arc length parametrization of γ . Thus

$$\kappa_{g} = x'' \cdot (N \times x')$$

$$= [\sigma_{uu}(u')^{2} + 2\sigma_{uv}u'v' + \sigma_{vv}(v')^{2} + \sigma_{u}u'' + \sigma_{v}v''] \cdot [(\sigma_{u} \times \sigma_{v}) \cdot (u'\sigma_{u} + v'\sigma_{v})]$$

$$= [\sigma_{uu}(u')^{2} + 2\sigma_{uv}u'v' + \sigma_{vv}(v')^{2} + \sigma_{u}u'' + \sigma_{v}v''] \cdot (u'\sigma_{v} - v'\sigma_{u})$$

$$= v''u' - u''v'$$

$$= \left(\begin{array}{c} u \\ v \end{array} \right)'' \cdot \left[\left(\begin{array}{c} u \\ v \end{array} \right)'' \right]^{\perp} = \kappa_{s}.$$
(28)

QUESTION 4. (5 PTS) Let $f: S_1 \mapsto S_2$ be a local isometry. Let a curve $\gamma_1 \subset S_1$ and $\gamma_2 := f(\gamma_1)$. Let $w_1(s)$ be a parallel tangent vector field along γ_1 . For every $p \in \gamma_1$, Let $w_2(f(p)) := (Df)(p)(w_1(p))$. Then $w_2(s)$ is a tangent vector field along γ_2 . Prove or disprove: w_2 is parallel along γ_2 .

Solution. We prove that the claim is true.

Let $\sigma_1(u, v)$ be a surface patch for S_1 and let $\sigma_2(u, v) := f(\sigma_1(u, v))$. Also let $x_1(s)$ be an arc length parametrization of γ_1 and let $x_2(s) := f(x_1(s))$. Since f is a local isometry, s is also the arc length parameter of γ_2 .

In this setup we have $\sigma_{2,u} = (Df)(\sigma_{1,u})$ and $\sigma_{2,v} = (Df)(\sigma_1, v)$. Now let $w_1(s) = \alpha(s) \sigma_{1,u} + \beta(s) \sigma_{1,v}$. Then we have $w_2(s) = \alpha(s) \sigma_{2,u} + \beta(s) \sigma_{2,v}$. Since $w_1(s)$ is parallel along γ_1 , we have

$$(\mathbb{E}_{1} \alpha + \mathbb{F}_{1} \beta)' = \frac{1}{2} (\alpha \beta) \begin{pmatrix} \mathbb{E}_{1} & \mathbb{F}_{1} \\ \mathbb{F}_{1} & \mathbb{G}_{1} \end{pmatrix}_{u} \begin{pmatrix} u' \\ v' \end{pmatrix},$$

$$(\mathbb{F}_{1} \alpha + \mathbb{G}_{1} \beta)' = \frac{1}{2} (\alpha \beta) \begin{pmatrix} \mathbb{E}_{1} & \mathbb{F}_{1} \\ \mathbb{F}_{1} & \mathbb{G}_{1} \end{pmatrix}_{v} \begin{pmatrix} u' \\ v' \end{pmatrix}.$$

$$(29)$$

But since $\mathbb{E}_1 = \mathbb{E}_2$, $\mathbb{F}_1 = \mathbb{F}_2$, $\mathbb{G}_1 = \mathbb{G}_2$, $(\alpha(s), \beta(s))$ satisfies the corresponding equations on S_2 and consequently w_2 is also parallel along γ_2 .