Review for Final: Theory of Surfaces

TABLE OF CONTENTS

Review for Final: Theory of Surfaces 1

1. $\mathrm{Q} \& \mathrm{~A}$ 2
2. Go through lecture notes;
3. Re-do the two midterms;
4. Re-do all homeworks;
5. Go through textbook and work on exercises in it.

1. Q\&A

- Signed curvature for plane curves.

It is exactly the geodesic curvature of the curve. Note that the normal curvature of any plane curve is zero.

- Q2 of HW7.

Question. Let γ be a curve on S. Let w, \tilde{w} be unit vector fields along γ. Further assume that at every $p \in \gamma$, there holds the angle between $w, \tilde{w}, \angle(w, \tilde{w})=\theta_{0}$, a constant. Prove or disprove: w is parallel along γ if and only if \tilde{w} is parallel along γ.

Solution. The claim is true. We parametrize γ by some $x(t)$ and simply write $w(t)$, $\tilde{w}(t)$. We discuss two cases.

1. $\angle(w, \tilde{w})=0$ or π. Then $\tilde{w}=w$ or $-w$. Clearly $\nabla_{\gamma} \tilde{w}=0$.
2. Otherwise. Notice that this means $\{w, \tilde{w}\}$ for a basis for the tangent plane. By assumption we have $w \cdot \tilde{w}=$ constant. Therefore

$$
\begin{equation*}
w^{\prime} \cdot \tilde{w}+w \cdot \tilde{w}^{\prime}=0 \tag{1}
\end{equation*}
$$

Since $\nabla{ }_{\gamma} w=0$, we have $w^{\prime} \perp \tilde{w}$. Therefore $\tilde{w}^{\prime} \cdot w=0$. On the other hand, as $\|\tilde{w}\|=1$ we have $\tilde{w}^{\prime} \cdot \tilde{w}=0$. Thus $\tilde{w} \| N$ and consequently $\nabla_{\gamma} \tilde{w}=0$.

- How to show a curve is geodesic?
- A curve γ is a geodesic when its unit tangent vector stays parallel:

$$
\begin{equation*}
\nabla_{\gamma} T=0 . \tag{2}
\end{equation*}
$$

- Thus if $T=\alpha \sigma_{u}+\beta \sigma_{v}, \nabla{ }_{\gamma} T=0$ becomes

$$
\begin{equation*}
\alpha^{\prime}+(\alpha, \beta)\left(\Gamma_{i j}^{1}\right)\binom{u^{\prime}}{v^{\prime}}=0, \quad \beta^{\prime}+(\alpha, \beta)\left(\Gamma_{i j}^{2}\right)\binom{u^{\prime}}{v^{\prime}}=0 \tag{3}
\end{equation*}
$$

- Let γ be given as $\sigma(u(t), v(t))$.
- Case 1. t is arc length. Then γ is a geodesic if and only if

$$
\begin{equation*}
u^{\prime \prime}+\left(u^{\prime}, v^{\prime}\right)\left(\Gamma_{i j}^{1}\right)\binom{u^{\prime}}{v^{\prime}}=0, \quad v^{\prime \prime}+\left(u^{\prime}, v^{\prime}\right)\left(\Gamma_{i j}^{2}\right)\binom{u^{\prime}}{v^{\prime}}=0 \tag{4}
\end{equation*}
$$

- Case 2. t may not be arc length. Then calculate

$$
\begin{equation*}
T=\frac{u^{\prime}}{\sqrt{\mathbb{E} u^{\prime 2}+2 \mathbb{F} u^{\prime} v^{\prime}+\mathbb{G} v^{\prime 2}}} \sigma_{u}+\frac{v^{\prime}}{\sqrt{\mathbb{E} u^{\prime 2}+2 \mathbb{F} u^{\prime} v^{\prime}+\mathbb{G} v^{\prime 2}}} \sigma_{v} \tag{5}
\end{equation*}
$$

Thus $\nabla_{\gamma} T=0$ becomes

$$
\begin{align*}
& \left(\frac{u^{\prime}}{\sqrt{\mathbb{E} u^{\prime 2}+2 \mathbb{F} u^{\prime} v^{\prime}+\mathbb{G} v^{\prime 2}}}\right)^{\prime}+\frac{\left(u^{\prime}, v^{\prime}\right)\left(\Gamma_{i j}^{1}\right)\binom{u^{\prime}}{v^{\prime}}}{\sqrt{\mathbb{E} u^{\prime 2}+2 \mathbb{F} u^{\prime} v^{\prime}+\mathbb{G} v^{\prime 2}}}=0 \tag{6}\\
& \left(\frac{v^{\prime}}{\sqrt{\mathbb{E} u^{\prime 2}+2 \mathbb{F} u^{\prime} v^{\prime}+\mathbb{G} v^{\prime 2}}}\right)^{\prime}+\frac{\left(u^{\prime}, v^{\prime}\right)\left(\Gamma_{i j}^{2}\right)\binom{u^{\prime}}{v^{\prime}}}{\sqrt{\mathbb{E} u^{\prime 2}+2 \mathbb{F} u^{\prime} v^{\prime}+\mathbb{G} v^{\prime 2}}}=0 \tag{7}
\end{align*}
$$

- Q3 of Midterm 2.

Question. Consider the same surface patch as in Questions 1 and 2, $\sigma(u, v):=(u$, $\left.v, e^{u v}\right)$.
a) (3 PTS) Calculate the Christoffel symbols $\Gamma_{i j}^{k}$.
b) (2 PTS) Is $u=0$ a geodesic? Justify your claim.

Solution.

a) We calculate

$$
\begin{equation*}
\sigma_{u} \times \sigma_{v}=\left(-e^{u v} v,-e^{u v} u, 1\right) . \tag{8}
\end{equation*}
$$

Therefore

$$
\left(\begin{array}{c}
0 \tag{9}\\
0 \\
e^{u v} v^{2}
\end{array}\right)=\sigma_{u u}=\Gamma_{11}^{1}\left(\begin{array}{c}
1 \\
0 \\
e^{u v} v
\end{array}\right)+\Gamma_{11}^{2}\left(\begin{array}{c}
0 \\
1 \\
e^{u v} u
\end{array}\right)+l\left(\begin{array}{c}
-e^{u v} v \\
-e^{u v} u \\
1
\end{array}\right) .
$$

We see that $\Gamma_{11}^{1}=l e^{u v} v, \Gamma_{11}^{2}=l e^{u v} u$. Substituting into the third equation we have

$$
\begin{equation*}
e^{u v} v^{2}=l e^{2 u v} v^{2}+l e^{2 u v} u^{2}+l \Longrightarrow l=\frac{e^{u v} v^{2}}{e^{2 u v}\left(u^{2}+v^{2}\right)+1} . \tag{10}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\Gamma_{11}^{1}=\frac{e^{2 u v} v^{3}}{e^{2 u v}\left(u^{2}+v^{2}\right)+1}, \quad \Gamma_{11}^{2}=\frac{e^{2 u v} v^{2} u}{e^{2 u v}\left(u^{2}+v^{2}\right)+1} . \tag{11}
\end{equation*}
$$

Next we have

$$
\left(\begin{array}{c}
0 \tag{12}\\
0 \\
e^{u v}(1+u v)
\end{array}\right)=\sigma_{u v}=\Gamma_{12}^{1}\left(\begin{array}{c}
1 \\
0 \\
e^{u v} v
\end{array}\right)+\Gamma_{12}^{2}\left(\begin{array}{c}
0 \\
1 \\
e^{u v} u
\end{array}\right)+m\left(\begin{array}{c}
-e^{u v} v \\
-e^{u v} u \\
1
\end{array}\right)
$$

which gives

$$
\begin{equation*}
\Gamma_{12}^{1}=\frac{e^{2 u v}(1+u v) v}{e^{2 u v}\left(u^{2}+v^{2}\right)+1}, \quad \Gamma_{12}^{2}=\frac{e^{2 u v}(1+u v) u}{e^{2 u v}\left(u^{2}+v^{2}\right)+1} . \tag{13}
\end{equation*}
$$

Finally we calculate

$$
\left(\begin{array}{c}
0 \tag{14}\\
0 \\
e^{u v} u^{2}
\end{array}\right)=\sigma_{v v}=\Gamma_{22}^{1}\left(\begin{array}{c}
1 \\
0 \\
e^{u v} v
\end{array}\right)+\Gamma_{22}^{2}\left(\begin{array}{c}
0 \\
1 \\
e^{u v} u
\end{array}\right)+n\left(\begin{array}{c}
-e^{u v} v \\
-e^{u v} u \\
1
\end{array}\right)
$$

which gives

$$
\begin{equation*}
\Gamma_{22}^{1}=\frac{e^{2 u v} v u^{2}}{e^{2 u v}\left(u^{2}+v^{2}\right)+1}, \quad \Gamma_{22}^{2}=\frac{e^{2 u v} u^{3}}{e^{2 u v}\left(u^{2}+v^{2}\right)+1} . \tag{15}
\end{equation*}
$$

b) We parametrize $u=0$ as $u(t)=0, v(t)=t$. Note that $x(t):=\sigma(u(t), v(t))=(0$, $t, 1)$ is arc length parametrized.

Next along $u=0$, we have

$$
\begin{array}{ll}
\Gamma_{11}^{1}=\frac{v^{3}}{1+v^{2}}, & \Gamma_{11}^{2}=0, \\
\Gamma_{12}^{1}=\frac{v}{1+v^{2}}, & \Gamma_{12}^{2}=0, \tag{16}\\
\Gamma_{22}^{1}=0, & \Gamma_{22}^{2}=0 .
\end{array}
$$

Therefore the geodesic equations are satisfied along $u=0$:

$$
\begin{gather*}
0+\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{v^{3}}{1+v^{2}} & 0^{1} \\
0^{1} & 0^{1}
\end{array}\right)\binom{0}{1}=0 \tag{17}\\
0+\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\binom{0}{1}=0 \tag{18}
\end{gather*}
$$

So $u=0$ is a geodesic.

- Developable surface.
- Intuition. A surface that can be "flattened" without stretching or squeezing. A surface that can have a faithful plane map.
- How to check? $K=0$.
- Homework 9.

Question 1. (5 PTs) Let S be a regular, orientable, compact surface with positive Gaussian curvature: $K>K_{\min }>0$. Prove that the surface area of S is less than $4 \pi / K_{\text {min }}$.

Proof. Take any simple closed curve γ on S. γ divides S into two regions Ω_{1}, Ω_{2}. Let γ be oriented such that Ω_{1} is its interior. Then by Gauss-Bonnet theorem

$$
\begin{equation*}
\int_{\Omega_{1}} K \mathrm{~d} S+\int_{\gamma} \kappa_{g} \mathrm{~d} s=2 \pi, \quad \int_{\Omega_{2}} K \mathrm{~d} S+\int_{-\gamma} \kappa_{g} \mathrm{~d} s=2 \pi \tag{19}
\end{equation*}
$$

where $-\gamma$ is γ with the opposite orientation. Since

$$
\begin{equation*}
\int_{-\gamma} \kappa_{g} \mathrm{~d} s=-\int_{\gamma} \kappa_{g} \mathrm{~d} s \tag{20}
\end{equation*}
$$

we have

$$
\begin{equation*}
4 \pi=\int_{S} K \mathrm{~d} S \geqslant \int_{S} K_{\min } \mathrm{d} S \tag{21}
\end{equation*}
$$

and the conclusion follows.
QuESTION 2. (5 PTS) Let S be a compact oriented surface that can be smoothly deformed into a sphere. Let γ be a simple closed geodesic separating S into two regions A, B. Let $\mathcal{G}: S \mapsto \mathbb{S}^{2}$ be the Gauss map. Prove that $\mathcal{G}(A)$ and $\mathcal{G}(B)$ have the same area.

Proof. Since \mathbb{S}^{2} taking away one point can be covered by one single surface patch, so can S. Let $\sigma(u, v)$ be such a surface patch for S. Then we have

$$
\begin{equation*}
\int_{S} K \mathrm{~d} S=\int_{U} K(u, v) \sqrt{\mathbb{E} \mathbb{G}-\mathbb{F}^{2}} \mathrm{~d} u \mathrm{~d} v . \tag{22}
\end{equation*}
$$

Now let U_{A}, U_{B} be such that $\sigma\left(U_{A}\right)=A, \sigma\left(U_{B}\right)=B$ (maybe missing one point). Denote $N(u, v):=\mathcal{G}(\sigma(u, v))$. Then we have

$$
\begin{equation*}
\text { Area of } \mathcal{G}(A)=\int_{U_{A}}\left\|N_{u} \times N_{v}\right\| \mathrm{d} u \mathrm{~d} v \tag{23}
\end{equation*}
$$

Recalling

$$
\begin{equation*}
-N_{u}=a_{11} \sigma_{u}+a_{12} \sigma_{v}, \quad-N_{v}=a_{21} \sigma_{u}+a_{22} \sigma_{v}, \tag{24}
\end{equation*}
$$

we have

$$
N_{u} \times N_{v}=\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{21} \tag{25}\\
a_{12} & a_{22}
\end{array}\right) \sigma_{u} \times \sigma_{v}=K \sigma_{u} \times \sigma_{v}
$$

Consequently

$$
\begin{align*}
\int_{U_{A}}\left\|N_{u} \times N_{v}\right\| \mathrm{d} u \mathrm{~d} v & =\int_{U_{A}} K\left\|\sigma_{u} \times \sigma_{v}\right\| \mathrm{d} u \mathrm{~d} v \\
& =\int_{U_{A}} K(u, v) \sqrt{\mathbb{E} \mathbb{G}-\mathbb{F}^{2}} \mathrm{~d} u \mathrm{~d} v \\
& =\int_{A} K \mathrm{~d} S \\
& =2 \pi-\int_{\gamma} \kappa_{g} \mathrm{~d} s=2 \pi \tag{26}
\end{align*}
$$

Similarly we have Area of $\mathcal{G}(B)=2 \pi$.
Question 3. Let S be a developable surface. Let γ be a curve on S. Let $\tilde{\gamma}$ be the curve corresponding to γ on the plane that is the "flattened" S. Prove or disprove: The geodesic curvature of γ and the signed curvature of $\tilde{\gamma}$ are the same at corresponding points.

Solution. We prove that the claim is true.
Let $\sigma(u, v): U \mapsto S$ a local isometry from the plane to S. Clearly $\sigma(u, v)$ can serve as a surface patch. Furthermore we have $\mathbb{E}=\mathbb{G}=1, \mathbb{F}=0$ and consequently all $\Gamma_{i j}^{k}=0$. Note that this implies the surface normal

$$
\begin{equation*}
N=\sigma_{u} \times \sigma_{v}, \tag{27}
\end{equation*}
$$

and that $\sigma_{u u}, \sigma_{u v}, \sigma_{v v} \| N$.
Now let $(u(s), v(s))$ be an arc length parametrization of $\tilde{\gamma}$. We then see that $x(s):=\sigma(u(s), v(s))$ is an arc length parametrization of γ. Thus

$$
\begin{align*}
\kappa_{g} & =x^{\prime \prime} \cdot\left(N \times x^{\prime}\right) \\
& =\left[\sigma_{u u}\left(u^{\prime}\right)^{2}+2 \sigma_{u v} u^{\prime} v^{\prime}+\sigma_{v v}\left(v^{\prime}\right)^{2}+\sigma_{u} u^{\prime \prime}+\sigma_{v} v^{\prime \prime}\right] \cdot\left[\left(\sigma_{u} \times \sigma_{v}\right) \cdot\left(u^{\prime} \sigma_{u}+v^{\prime} \sigma_{v}\right)\right] \\
& =\left[\sigma_{u u}\left(u^{\prime}\right)^{2}+2 \sigma_{u v} u^{\prime} v^{\prime}+\sigma_{v v}\left(v^{\prime}\right)^{2}+\sigma_{u} u^{\prime \prime}+\sigma_{v} v^{\prime \prime}\right] \cdot\left(u^{\prime} \sigma_{v}-v^{\prime} \sigma_{u}\right) \\
& =v^{\prime \prime} u^{\prime}-u^{\prime \prime} v^{\prime} \\
& =\binom{u}{v}^{\prime \prime} \cdot\left[\binom{u}{v}^{\prime}\right]^{\perp}=\kappa_{s} . \tag{28}
\end{align*}
$$

Question 4. (5 PTs) Let $f: S_{1} \mapsto S_{2}$ be a local isometry. Let a curve $\gamma_{1} \subset S_{1}$ and $\gamma_{2}:=f\left(\gamma_{1}\right)$. Let $w_{1}(s)$ be a parallel tangent vector field along γ_{1}. For every $p \in \gamma_{1}$, Let $w_{2}(f(p)):=(D f)(p)\left(w_{1}(p)\right)$. Then $w_{2}(s)$ is a tangent vector field along γ_{2}. Prove or disprove: w_{2} is parallel along γ_{2}.

Solution. We prove that the claim is true.
Let $\sigma_{1}(u, v)$ be a surface patch for S_{1} and let $\sigma_{2}(u, v):=f\left(\sigma_{1}(u, v)\right)$. Also let $x_{1}(s)$ be an arc length parametrization of γ_{1} and let $x_{2}(s):=f\left(x_{1}(s)\right)$. Since f is a local isometry, s is also the arc length parameter of γ_{2}.

In this setup we have $\sigma_{2, u}=(D f)\left(\sigma_{1, u}\right)$ and $\sigma_{2, v}=(D f)\left(\sigma_{1}, v\right)$. Now let $w_{1}(s)=$ $\alpha(s) \sigma_{1, u}+\beta(s) \sigma_{1, v}$. Then we have $w_{2}(s)=\alpha(s) \sigma_{2, u}+\beta(s) \sigma_{2, v}$. Since $w_{1}(s)$ is parallel along γ_{1}, we have

$$
\begin{align*}
& \left(\mathbb{E}_{1} \alpha+\mathbb{F}_{1} \beta\right)^{\prime}=\frac{1}{2}\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\left(\begin{array}{ll}
\mathbb{E}_{1} & \mathbb{F}_{1} \\
\mathbb{F}_{1} & \mathbb{G}_{1}
\end{array}\right)_{u}\binom{u^{\prime}}{v^{\prime}}, \tag{29}\\
& \left(\mathbb{F}_{1} \alpha+\mathbb{G}_{1} \beta\right)^{\prime}=\frac{1}{2}\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\left(\begin{array}{ll}
\mathbb{E}_{1} & \mathbb{F}_{1} \\
\mathbb{F}_{1} & \mathbb{G}_{1}
\end{array}\right)_{v}\binom{u^{\prime}}{v^{\prime}} .
\end{align*}
$$

But since $\mathbb{E}_{1}=\mathbb{E}_{2}, \mathbb{F}_{1}=\mathbb{F}_{2}, \mathbb{G}_{1}=\mathbb{G}_{2},(\alpha(s), \beta(s))$ satisfies the corresponding equations on S_{2} and consequently w_{2} is also parallel along γ_{2}.

