
Midterm Review I : Method of Characteristics

Recall that we try to find general solutions of the following quasi-linear first order PDE:

a(x , y , u) ux + b(x , y , u) uy = c(x , y , u) . ( 1 )

1 . The “algorithm”.
We will present the method of characteristics in a slightly different manner which is more “algorithm-

like”.
The initial set-up is the following “chain” of equalities:

dx

a( x , y , u)
=

dy

b( x , y , u)
=

du

c(x , y , u)
. ( 2 )

This is an “equality-chain” of formal ratios.
In the “main part” of method of characteristics, we add more and more new terms ( ratios) to this chain

by applying the following property of equivalent ratios repeatedly ( each application adds exactly one new
ratio to the chain) :
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where each ci can be either a number or a function of x , y , u .
The “algorithm” terminates when the “chain” contains two ( three when we have three variables x , y , z )

ratios of the form1 dφ ( x , y , u )

0
and dψ ( x , y , u )

0
and furthermore φ( x , y , u) and ψ (x , y , u) are “independent”

(meaning there is no function h such that h ( φ) = ψ ) .
As soon as φ and ψ are obtained, the general solution can be written as

F( φ , ψ ) = 0 ( 4)

where F is any function. Fix one F , we obtain one solution of the equation. Note that the correspondence
is not one-to-one, in particular different F may give the same solution.

Remark 1 . If we just form new ratios randomly by taking random c1 , � , cn , then almost certainly our
new ratios will be useless. Although there is no “universal rule” to follow to obtain “useful” new ratios,
there are indeed some guidelines. In short, we try to find a set of multipliers c1 , � , cn which will make the
denominator 0 . In particular one can aim at obtaining the following “intermediate” ratios:
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because, for example,
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In the first one we have taken c1 = f− 1 , c2 = − g− 1 , in the second one c1 = f , c2 = − g .

2. Examples.

Example 2. ( § 2. 8, 8 e) ) Solve

x
(
y2 − z2

)
ux + y

(
z2 − x2

)
uy + z

(
x2 − y2

)
uz = 0 . ( 8)

(There is a typo in the book)
Solution. We “initialize” the “chain”:

dx

x ( y2 − z2 )
=

dy

y ( z2 − x2 )
=

dz

z ( x2 − y2 )
=

du

0
. ( 9)

1 . We see that it ’ s OK to be “divided by 0” in the method. The reason to this tolerance will be explained in § 3 .



We see that there is one ratio with denominator 0 , we need to find the other two.
Recalling that our main tool is
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We start by trying to find a set of multipliers which can yield a 0 denominator.
Observing the special symmetry of the denominators, we have
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In other words, we can have a new ratio
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0
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The question is whether the nominator can be written as dφ . We are lucky enough that
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0
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Note that as df
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for any function g , we have
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in the chain.
The thrid ratio can finally be obtained by observing

x
[
x
(
y2 − z2

) ]
+ y

[
y
(
z2 − x2

) ]
+ z
[
z
(
x2 − y2

) ]
= 0 ( 1 5)

which gives
d
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)

0
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Thus we have all three “useful” ratios
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which leads to the general solution

F
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= 0
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Note that there can be many failed attempts, for example, we observe that dz

z ( x 2 − y2 )
can be written as

d( ln z )

x 2 − y2 where the nominator only contains z and the denominator only x , y , so we try to combine the first

two ratios to obtain
d
(
x 2 − y2

)

funct ion of z
. But we do not succeed.

3. A bit explanation.
Now we try to give some reason to our tolerance of ratios like dφ

0
. Recall our equation

a( x , y , u) ux + b( x , y , u) uy = c( x , y , u) . ( 1 9)

Let u = u(x , y) be a solution. Now consider a curve in the x-y plane:

x = x ( s ) , y = y( s ) ( 20)

We have

u = u( x( s ) , y( s ) ) . ( 21 )

Taking s derivative we obtain
du

ds
= x ′( s ) ux + y ′( s ) uy . ( 22 )

Comparing with the equation we see that when x ′( s ) = a( x( s ) , y( s ) , u( s ) ) , y ′( s ) = b( x( s ) , y( s ) , u( s ) ) we
must have

u ′( s ) = c(x ( s ) , y( s ) , u( s ) ) . ( 23)



This can be re-written as
dx

a
=

dy

b
=

du

c
= ds ( 24)

along this particular curve (x ( s ) , y( s ) , u( s ) ) .
Therefore dφ ( x , y , u )

0
is actually a “short-hand” of

dφ( x( s ) , y( s ) , u( s ) )

ds
= 0 ( 25)

which makes perfect sense, and means that the curve ( x( s ) , y( s ) , u( s ) ) is the intersection of the solution
u − u( x , y) = 0 and some level set of φ : φ (x , y , u) = c .

Now if we have another ψ , independent of φ (meaning: any level set of ψ intersects any level set of φ
along a curve) , such that dψ

0
appears in the chain, then the curve (x ( s ) , y( s ) , u( s ) ) is also the intersection

of the solution u − u(x , y) = 0 and some level set of φ : ψ (x , y , u) = c ′ .
Now it is clear that the curve (x ( s ) , y( s ) , u( s ) ) has to coincide with the intersection of φ (x , y , u) = c

and ψ (x , y , u) = c ′ , in other words, the curve is contained in

F( φ , ψ ) = 0 ( 26)

for some F .


