
Weeks 09 – 1 0 : Sturm-Liouville Theory and Special Functions

We recall the basic steps of the method of separation of variables.

1 . Search for basic solutions that are the products of one-variable functions using the equation and an
appropriate subset of the initial/boundary conditions. Ideally, only countably many ( that is, can
be numbered by natural or integer numbers) such solutions exist.

2 . Use the remaining initial/boundary conditions to determine an infinite sum involving the basic
solutions.

3. Verify that this infinite sum indeed corresponds to a function and this function indeed satisfies the
equation together with the initial/boundary conditions.

The first two steps are emphasized in our lectures, and the third step involves much mathematical theory
and interested readers should take higher level PDE courses or consult more advanced books.

1 . General boundary value problem.
We have seen that the method of separation of variables, with the help of the theory of Fourier series,

can be applied to a wide variety of PDEs. However a closer inspection reveals that all of our previous
examples have the following boundary conditions:

u( 0 , t) = u( l , t) = 0 . ( 1 )

How about problems with other boundary conditions? Let’ s check some examples.

Example 1 . Consider the heat equation

ut = κ ux x 0 < x < l , t > 0 ( 2 )
u(x , 0) = f (x ) 0 6 x 6 l , ( 3)
ux ( 0 , t) = 0 t > 0 , ( 4)
ux ( l , t) = 0 t > 0 . ( 5)

This system models the change of temperature along a rod of length l whose both ends are insulated.
Solution. We apply the method of separation of variables. As we have seen, the method consists of the
following steps:

1 . First we try to find non-zero “basic” solutions whose variables are separated:

u = X (x ) T( t) . ( 6)

Substituting this into the equation we obtain

T ′( t) X ( x) = κ T( t) X ′′( x)
� T ′( t)

T( t)
= κ

X ′′( x)

X (x )
. ( 7)

Thus we need to solve the ODE

X ′′( x) − λ X (x ) = 0 ( 8)

with boundary conditions

X ′( 0) = X ′( t) = 0 . ( 9)

The solutions are

cos
( n π

l
x
)
, n = 0 , 1 , 2 , � ( 1 0)

Note that the sum starts from 0 .

2 . Represent the solution by an infinite sum.
As λn = −

( n π
l

) 2
, we see that

Tn( t) = e
− ( n π

l
t
)

( 1 1 )

and therefore formally

u( x , t) =
∑

n= 0

∞
an e

− ( n π
l
t
)
cos

( n π
l
x
)
. ( 1 2 )



The coefficients an is determined by requiring

f (x ) =
∑

n= 0

∞
an cos

( n π
l
x
)
. ( 1 3)

Noticing that this is simply a cosine series, we see that the coefficients can be computed through

an =
2

l

∫

0

l

f ( x) cos
( n π

l
x
)

n > 0 ( 1 4)

and

a0 =
1

l

∫

0

l

f (x ) dx. ( 1 5)

We will see now that for other, more complicated, boundary conditions, the theory of Fourier series is not
enough anymore.

Example 2. We still consider the heat equation modeling a rod. This time the temperature at 0 is kept
0 while the other end (x = l ) is in contact with a medium of tempature 0 .

ut = κ ux x 0 < x < l , t > 0 ( 1 6)
u(x , 0) = f (x ) 0 6 x 6 l , ( 1 7)
u( 0 , t) = 0 t > 0 , ( 1 8)
ux ( l , t) = − h u( l , t) . t > 0 . ( 1 9)

Here h > 0 .
Solution. Applying the method of separation of variables, we reach

X ′′ − λ X = 0 , X ( 0) = 0 , h X ( l ) + X ′( l ) = 0 . ( 20)

We discuss the cases:

i. λ > 0 . The general solution is

A e λ
√

x + B e− λ
√

x . ( 21 )

Now

X ( 0) = 0 � A + B = 0 ( 22 )

h X ( l ) + X ′( l ) = 0 �
(
h + λ
√ )

e λ
√

l A +
(
h − λ
√ )

e− λ
√

l B = 0 . ( 23)

The two equations can be written

 1 1(

h + λ
√ )

e λ
√

l
(
h − λ
√ )

e− λ
√

l



(
A
B

)
=

(
0
0

)
. ( 24)

For the solution to be non-zero, we have to have

0 = det


 1 1(

h + λ
√ )

e λ
√

l
(
h − λ
√ )

e− λ
√

l


 =

(
h − λ
√ )

e− λ
√

l −
(
h + λ
√ )

e λ
√

l . ( 25)

As h > 0 and λ
√

> 0 , this is not possible.

ii. λ = 0 . The general solution is

A + B x ( 26)

The boundary conditions lead to

A = 0 , h A + ( h l + 1 ) B = 0 � A = B = 0 . ( 27)



iii . λ < 0 . The general solution is

A cos
(
− λ
√

x
)

+ B sin
(
− λ
√

x
)
. ( 28)

Now

X ( 0) = 0
�

A = 0 , ( 29)

h X ( l ) + X ′( l ) = 0
�

h sin
(
− λ
√

l
)

+ − λ
√

cos
(
− λ
√

l
)

= 0 . ( 30)

Therefore the solution is of the form X = sin( px) with p satisfying

tan( p l ) = − p/h. ( 31 )

It is easy to see that the solutions form an infinite series

0 < p1 < p2 < � < � ( 32 )

Therefore our solution to the PDE can be written as

∑

1

∞
bn e− κ pn

2 t sin( pn x) ( 33)

where bn is determined by

f (x ) =
∑

1

∞
bn sin( pn x) . ( 34)

Now how should we determine bn? And furthermore how can we know whether the infinite sum gives the
solution – or equivalently whether similar properties as those hold for the Fourier series hold for our series
with sin( pn x ) ? Keep in mind that it is not possible to obtain a formula for the pns.

Mimicking what we have done before, we compute, for n
�
m ,

∫

0

l

sin( pn x ) sin( pm x) dx =
1

2

∫

0

l

[ cos( pn − pm) x − cos( pn + pm) x ] dx

=
1

2

[
sin( pn − pm) l

pn − pm
− sin( pn + pm) l

pn + pm

]

=
1

2

[
sin( pn l ) cos( pm l ) − sin( pm l ) cos( pn l )

pn − pm
− sin( pn l ) cos( pm l ) + sin( pm l ) cos( pn l )

pn + pm

]
. ( 35)

Now using the fact that

h sin( pn l ) + pn cos( pn l ) = 0 � sin( pn l ) = − pn
h

cos( pn l ) ( 36)

we have
∫

0

l

sin( pn x ) sin( pm x ) dx = 0 . ( 37)

Therefore we can determine bn by

bn =

∫

0

l

f (x ) sin( pn x) dx

∫

0

l

sin2 ( pn x ) dx

. ( 38)

But a convergence theory similar to that of the Fourier series is clearly beyond us here.

Example 3. Consider the heat equation in a 2D disc x2 + y2 6 1 :

ut = κ (ux x + uyy) ( 39)
u(x , y , 0) = f (x , y) ( 40)
u( x , y , t) = 0 x2 + y2 = 1 . ( 41 )



Solution. Due to the special geometry of the domain, it is natural to consider the problem using polar
coordinates ( r , θ ) satisfying

x = r cosθ , y = r sinθ . ( 42 )

Now we change the variables from x , y to r , θ . Differentiating the above relation we have

( cosθ ) rx − r ( sinθ ) θx = 1 ( 43)

( cosθ ) ry − r ( sinθ ) θy = 0 ( 44)
( sinθ ) rx + r ( cosθ ) θx = 0 ( 45)

( sinθ ) ry + r ( cosθ ) θy = 1 ( 46)

consequently

rx =
x

r
, ry =

y

r
, rx x =

1

r
− x

2

r3
, ryy =

1

r
− y

2

r3
; ( 47)

θx = − sinθ
r

= − y

r2
, θy =

cosθ
r

=
x

r2
, θx x =

2 x y

r4
, θyy = − 2 x y

r4

Therefore

ux x = ur r
x2

r2
− urθ 2 x y

r3
+ uθθ

y2

r4
+ ur

(
1

r
− x

2

r3

)
+ uθ

2 x y

r4
, ( 48)

uyy = ur r
y2

r2
+ urθ

2 x y

r3
+ uθθ

x2

y4
+ ur

(
1

r
− y

2

r3

)
+ uθ

(
− 2 x y

r4

)
. ( 49)

The equation and the initial-boundary conditions in polar coordinate form are

ut = κ

(
ur r +

1

r
ur +

1

r2
uθθ

)
( 50)

u( r , θ , 0) = f ( r , θ ) ( 51 )
u( 1 , θ , t) = 0 . ( 52 )

We apply separation of variables to solve this equation.
First we try to find non-trivial “basic” solutions of the form

u( r , θ , t) = R( r) Θ ( θ ) T( t) . ( 53)

Substituting this into the equation we reach

R( r) Θ ( θ ) T ′( t) = κ

(
R ′ ′( r) Θ ( θ ) +

1

r
R ′( r) Θ ( θ ) +

1

r2
R( r) Θ ′′( θ )

)
T( t) . ( 54)

Dividing both sides by R( r) Θ ( θ ) T( t) we reach

T ′( t)
T( t)

= κ

(
R ′′( r)
R( r)

+
1

r

R ′( r)
R( r)

+
1

r2

Θ ′′( θ )
Θ ( θ )

)
. ( 55)

As the LHS only involves t and the RHS only r , θ there is a constant λ such that

T ′( t)
T( t)

= − κ λ ( 56)

and
R ′ ′( r)
R( r)

+
1

r

R ′( r)
R( r)

+
1

r2

Θ ′′( θ )
Θ ( θ )

= − λ . ( 57)

Multiply both sides by r2 we have

r2 R ′′( r)
R( r)

+
r R ′( r)
R( r)

+ λ r2 =
Θ ′′( θ )
Θ ( θ )

. ( 58)

The LHS only involves r and the RHS only θ . Thus there is a constant µ such that

Θ ′′( θ )
Θ ( θ )

= µ,
r2 R ′′( r)
R( r)

+
r R ′( r)
R( r)

+ λ r2 = − µ. ( 59)



As Θ( θ ) is obviously 2 π periodic, we have

µ = − n2 , n = 1 , 2 , 3 , � ( 60)

and

Θ( θ ) = A cos(n θ ) + B sin(n θ ) . ( 61 )

On the other hand, the equation for R now becomes

r2 R ′′ + r R ′ +
(
λ r2 − n2

)
R = 0 , ( 62 )

with the boundary condition

R( 1 ) = 0 . ( 63)

Now it is clear that the success of our method depends on the following:

1 . For each n , we have λn , k , such that the above equation has a solution Rn , k ;

2 . The initial data f ( r , θ ) have the following expansion

f ( r , θ ) =
∑

n , k

an , k Rn , k ( r) cos(n θ ) + bn , k Rn , k sin(n θ ) . ( 64)

As we can always expand f ( r , θ ) into Fourier series

f ( r , θ ) =
∑

n

An( r) cos(n θ ) + Bn( r) sin(n θ ) , ( 65)

The requirement becomes expanding

An( r) =
∑

k

an , k Rn , k ( r) , Bn( r) =
∑

k

bn , k Rn , k ( r) . ( 66)

3. The resulting infinite double summation
∑

n , k

[an , k Rn , k ( r) cos(n θ ) + bn , k Rn , k sin(n θ ) ] e− λn , k t ( 67)

indeed gives the solution.

Clearly we see that a Fourier-type theory of the functions Rn , k is crucial to the success of our method.
We will see soon that these Rn , k ’ s are the so-called Bessel functions, which often arise in PDEs on discs
and cylinders.

From the above example we see that as soon as the system becomes more and more complicated, the
theory of Fourier series helps less and less. For simpler ones, we can still develop ad hoc theories following
the idea of Fourier series, but for more complicated ones, it seems very hard to do things “on the fly”. In
particular, a complete understanding of solutions to equations like

r2 R ′ ′ + r R ′ +
(
λ r2 − n2

)
R = 0 ( 68)

is needed. Such understanding is obtained from the following Sturm-Liouville theory.

2. Sturm-Liouville theory.
The standard Sturm-Liouville ( SL) problem is of the form

( p(x ) y ′) ′ + q(x ) y + λ r(x ) y = 0 , a < x < b ( 69)
α0 y( a) + α1 y ′( a) = 0 , ( 70)
β0 y( b) + β1 y ′( b) = 0 . ( 71 )

where all the functions and numbers are real. For simplicity we assume the coefficients are as smooth as
we need.



The problem is called

− regular when p, q , r are bounded on [a , b ] ( that is the interval a 6 x 6 b) , p, r > 0 for all a 6 x 6 b ,
and α0 , α1 real, not both 0 , and β0 , β1 real, not both 0 .

− singular when any one or more of the following happens

→ The interval ( a , b) is infinite, that is either a = − ∞ or b = + ∞ or both occurs.

→ p( x ) = 0 for some x ∈ [a , b ] or r(x ) = 0 for some x ∈ [a , b ] .

→ One or several coefficient function becomes ∞ at a or b , or both.

Example 4. We check the systems we have dealt with

−
y ′′ + λ y = 0 , y( 0) = y( l ) = 0 ( 72 )

We have

a = 0 , b = l ; p( x) = 1 , q(x ) = 0 , r( x) = 1 ; α0 = 1 , α1 = 0 , β0 = 1 , β1 = 0 . ( 73)

The system is a regular SL problem.

−
y ′′ + λ y = 0 , y ′( 0) = y ′( l ) = 0 ( 74)

We have

a = 0 , b = l ; p( x) = 1 , q(x ) = 0 , r( x) = 1 ; α0 = 0 , α1 = 1 , β0 = 0 , β1 = 1 . ( 75)

This is also a regular SL problem.

−
y ′′ + λ y = 0 , y( 0) = 0 , y ′( l ) = − h y( l ) . ( 76)

We have

a = 0 , b = l ; p(x ) = 1 , q(x ) = 0 , r( x) = 1 ; α0 = 1 , α1 = 0 , β0 = h , β1 = 1 . ( 77)

−
x2 y ′′ + x y ′ +

(
λ x2 − n2

)
y = 0 , y( 0) bounded, y( 1 ) = 0 . ( 78)

At first sight this problem is not an SL problem. However we can transform it through the fol-
lowing operations:

We search for a multiplier h (x ) such that

h ( x)
[
x2 y ′′ + x y ′ +

(
λ x2 − n2

)
y
]

= ( py ′) ′ + q y + λ r y. ( 79)

Comparing the two sides, we have

h ( x) x2 = p(x ) , h ( x) x = p(x )
′ ( 80)

which leads to

p( x)
′ =

1

x
p(x ) � p( x) = x � h (x ) =

1

x
. ( 81 )

Thus we see that the equation is equivalent to

( x y ′) ′ − n
2

x
y + λ x y = 0 ( 82 )

which corresponds to

a = 0 , b = 1 ; p(x ) = x , q(x ) = − n
2

x
, r(x ) = x ; β0 = 1 , β1 = 0 . ( 83)

This is a singular SL problem.



Any λ that the problem has non-trivial solutions is called an eigenvalue, the corresponding solutions are
called eigenfunctions.

2. 1 . Properties of regular Sturm-Liouville problems.
We see from the following theorem that the solutions to a SL problem enjoy similar properties as the

functions sin
( n π

l
x
)
and cos

( n π
l
x
)
in the Fourier series.

Theorem 5. A regular SL prob lem has the fol lowing properties.

1 . It has nonzero so lutions for a countab ly infinite set of values of λ . These eigenvalues are al l real.
The set of eigenvalues does not have any limit points. These e igenvalues are bounded from below if
α0 α1 6 0 and β0 β1 > 0 . These eigenvalues are bounded from below by 0 if furthermore q 6 0 .

2. For each fixed eigenvalue λ , the so lution space is one-dimensional. That is, there is yλ such that all
o ther solutions for the same λ is a multiple of yλ .

3. If we enumerate the e igenvalues as λ 1 , λ 2 , � , then for each λn we can pick one eigenfunction ϕn .
These e igenfunctions satisfy

a )
∫

a

b

ϕn( x ) ϕm (x ) r(x ) dx = 0 for any n
�
m .

b ) For any f having two continuous derivatives on [a , b ] and satisfying the boundary conditions,
the infinite sum

∑

n= 1

∞
cn ϕn ( 84)

where

cn =

∫

a

b

f (x ) ϕn( x) r( x) dx

∫

a

b

ϕn( x) 2 r(x ) dx

( 85)

converges abso lute ly uniformly to f (x ) . By “abso lute ly uniformly” we mean

∑

1

∞
| cn | | ϕn | < ∞ ( 86)

and the convergence to f is uniform.

c ) The only continuous function f on [a , b ] with
∫

a

b

f ( x) ϕn( x) r(x ) dx = 0 for al l n is f ≡ 0 .

d ) Ifϕn ’ s are chosen such that ∫

a

b

ϕn( x)
2 r(x ) dx = 1 ( 87)

We have the following Parseval- type relation
∫

a

b

f ( x)
2
r(x ) dx =

∑

n= 1

∞
| cn | 2 . ( 88)

Proof. The proofs for many of the above claims are either too technical or beyond our course. We omit
them.

1 . Properties of the eigenvalues.

− It has nonzero solutions for a countably infinite set of values of λ .
Omitted. Interested readers should check § 1 . 3 of Anthony W. Knapp Advanced Real

Analysis .

− These eigenvalues are all real.



Let λ be an eigenvalue and let ϕ be a corresponding eigenfunction. We compute

0 =

∫

a

b [
( py ′) ′ + q y + λ r y

]
ȳ dx

=

∫

a

b

( py ′) ′ ȳ +

∫

a

b

q | y | 2 + λ

∫

a

b

r | y | 2

= ( py ′) ȳ � ab −
∫

a

b

py ′ ȳ ′ +
∫

a

b

q | y | 2 + λ

∫

a

b

r | y | . ( 89)

On the other hand, taking the complex conjugate of

( py ′) ′ + q y + λ r y = 0 ( 90)

we obtain

( p ȳ ′) ′ + q ȳ + λ̄ r ȳ = 0 . ( 91 )

In other words, λ̄ is also an eigenvalue with eigenfunction ȳ . Multiplying this equation by y
and integrate, we have

0 =

∫

a

b [
( p ȳ ′) ′ + q ȳ + λ̄ r ȳ

]
y

=

∫

a

b

( p ȳ ′) ′ y +

∫

a

b

q | y | 2 + λ̄

∫

a

b

r | y | 2

= ( p ȳ ′) y � ab −
∫

a

b

py ′ ȳ ′ +
∫

a

b

q | y | 2 + λ̄

∫

a

b

r | y | 2 . ( 92 )

Combining the above, we reach

(
λ − λ̄

) ∫

a

b

r | y | 2 = p( b) [ y ′( b) ȳ ( b) − ȳ ′( b) y( b) ] − p( a) [ y ′( a) ȳ ( a) − ȳ ′( a) y( a) ] . ( 93)

Using the boundary conditions

α0 y( a) + α1 y
′( a) = 0 , ( 94)

β0 y( b) + β1 y
′( b) = 0 . ( 95)

we see that

y ′( b) ȳ ( b) − ȳ ′( b) y( b) = 0 , y ′( a) ȳ ( a) − ȳ ′( a) y( a) = 0 . ( 96)

Therefore
(
λ − λ̄

) ∫

a

b

r | y | 2 dx = 0 ( 97)

which leads to λ = λ̄ , or λ is real.

− The set of eigenvalues does not have any limit points.
Omitted.

− These eigenvalues are bounded from below if α0 α1 6 0 and β0 β1 > 0 . These eigenvalues are
bounded from below by 0 if furthermore q 6 0 .

We have

0 =

∫

a

b [
( py ′) ′ + q y + λ r y

]
ȳ dx

=

∫

a

b

( py ′) ′ ȳ +

∫

a

b

q | y | 2 + λ

∫

a

b

r | y | 2

= ( py ′) ȳ � ab −
∫

a

b

py ′ ȳ ′ +
∫

a

b

q | y | 2 + λ

∫

a

b

r | y | 2 .

= p( b) y ′( b) ȳ ( b) − p( a) y ′( a) ȳ ( a) −
∫

a

b [
p | y ′ | 2 − q | y | 2

]
+ λ

∫

a

b

r | y | 2 . ( 98)



Thus

λ =

{
− p( b) y ′( b) ȳ ( b) + p( a) y ′( a) ȳ ( a) +

∫
a

b
[
p | y ′ | 2 − q | y | 2

] }

∫
a

b r | y | 2
. ( 99)

Using the boundary conditions we have

− p( b) y ′( b) ȳ ( b) = p( b)
β0

β1
| y( b) | 2 , ( 1 00)

p( a) y ′( a) ȳ ( a) = − p( a)
α0

α1
| y( a) | 2 . ( 1 01 )

When α0 α1 6 0 and β0 β1 > 0 , both terms are non-negative which means

λ > −
∫
a

b
q | y | 2

∫
a

b r | y | 2
. ( 1 02 )

If furthermore q 6 0 , we see that λ > 0 too.

2 . For each fixed eigenvalue λ , the solution space is one-dimensional. That is, there is yλ such that all
other solutions for the same λ is a multiple of yλ .

Fix λ . Let y(x ) and z ( x) be two eigenfunctions. That is

( p(x ) y ′) ′ + q(x ) y + λ r( x) y = 0 , a < x < b ( 1 03)
α0 y( a) + α1 y

′( a) = 0 , ( 1 04)
β0 y( b) + β1 y

′( b) = 0 . ( 1 05)

and

( p( x) z ′) ′ + q(x ) z + λ r(x ) z = 0 , a < x < b ( 1 06)
α0 z ( a) + α1 z ′( a) = 0 , ( 1 07)
β0 z ( b) + β1 z ′( b) = 0 . ( 1 08)

Multiplying the y equation by z and z equation by y , and subtract, we have

0 = ( py ′) ′ z − ( p z ′) ′ y = ( p ( y ′ z − z ′ y) )
′ . ( 1 09)

We conclude that

p( x) ( y ′ z − z ′ y) (x ) = p( a) ( y ′ z − z ′ y) ( a) . ( 1 1 0)

As y , z both satisfy the boundary conditions, we have

p( a ) ( y ′( a) z ( a) − z ′( a) y( a) ) = 0 ( 1 1 1 )

which leads to

p ( y ′ z − z ′ y) = 0 � y ′ z − z ′ y = 0 ( 1 1 2 )

for all a 6 x 6 b as p( x) > 0 .
Finally,

y ′ z − z ′ y = 0 �
y ′

y
=
z ′

z
� ln y − ln z = constant � y/z = constant . ( 1 1 3)

3. We enumerate the eigenvalues by λ 1 , λ2 , � and denote the corresponding eigenfunctions by ϕ1 ,
ϕ2 , � . .

a)
∫

a

b

ϕn( x ) ϕm (x ) r(x ) dx = 0 for any n
�
m .

It suffices to show that if λ , µ are two distinct eigenvalues, and y , z the corresponding
eigenfunctions, then

∫
a

b
y z r dx = 0 .



Using the equations we have
∫

a

b [
( py ′) ′ + q y + λ r y

]
z −

[
( p z ′) ′ + q z + µ r z

]
y dx = 0 . ( 1 1 4)

After using the boundary conditions, we can show that

LHS = ( λ − µ)

∫
y z r dx. ( 1 1 5)

Therefore

( λ − µ)

∫

a

b

y( x) z (x ) r( x) dx = 0 . ( 1 1 6)

As λ
�
µ , we have ∫

a

b

y( x) z ( x) r( x) dx = 0 . ( 1 1 7)

b) Omitted.

c) Omitted.

d) Omitted.

�

2. 2 . Properties of singular Sturm-Liouville problems.
Recall that the problem is “singular” when any one ( or more) of the following is true:

→ The interval ( a , b) is infinite, that is either a = − ∞ or b = + ∞ or both occurs.

→ p( x ) = 0 for some x ∈ [a , b ] or r(x ) = 0 for some x ∈ [a , b ] .

→ One or several coefficient function becomes ∞ at a or b , or both.

For singular SL problems, appropriate boundary conditions should be specified. In particular, if p van-
ishes at a or b , we should require y and y ′ to be bounded at a or b respectively.

S imilar to the regular SL problems, the eigenfunctions for singular SL problems are also orthogonal
with respect to weight r( x) .

Example 6. Consider the Legendre’ s equation
[ (

1 − x2
)
y ′
] ′

+ λ y = 0 , − 1 < x < 1 . ( 1 1 8)

As p(x ) = 1 − x2 vanishes at both ends, the boundary conditions should be taken as

y , y ′ remain bounded as x→ ± 1 . ( 1 1 9)

The eigenvalues are λn = n (n + 1 ) . Here r(x ) = 1 , so the corresponding eigenfunctions satisfy
∫

− 1

1

Pm(x ) Pn(x ) dx = 0 , n
�
m. ( 1 20)

Example 7. Consider the Bessel’ s equation

( x y ′) ′ +

(
λ x − ν

2

x

)
y = 0 , 0 < x < a ( 1 21 )

p( x) = x vanishes at x = 0 . Therefore we can assign the usual boundary condition

β0 y + β1 y
′ = 0 ( 1 22 )

at x = a but need to require

y , y ′ remain bounded as x→ 0 + . ( 1 23)



The eigenvalues are n2 . As r( x) = x , the corresponding eigenfunctions satisfy
∫

0

a

yn(x ) ym( x) x dx = 0 , n
�
m. ( 1 24)

Example 8. Consider the Hermite’ s equation

u ′′ − 2 x u ′ + λ u = 0 , − ∞ < x < ∞ ( 1 25)

To write this problem into a SL problem, we multiply the equation by e− x
2
to obtain

(
e− x

2
u ′
) ′

+ λ e− x
2
u = 0 , − ∞ < x < ∞ . ( 1 26)

Now that we have p(x ) = e− x
2
which tends to 0 as x→ ± ∞ , the boundary conditions should be

u , u ′ remain bounded as x→ ± ∞ . ( 1 27)

The eigenvalues are λn = 2 n for nonnegative integers n . S ince r(x ) = e− x
2
, the orthogonality property

reads ∫

− ∞

∞
Hn(x ) Hm( x ) e− x

2
dx = 0 , n

�
m. ( 1 28)

3. Special functions.
To apply this theory to solve PDEs, we need to obtain more information of the eigenfunctions. This

leads to the theory of special functions.

3. 1 . Bessel function.
Recall our example problem: Consider the heat equation in a 2D disc x2 + y2 6 1 :

ut = κ (ux x + uyy) ( 1 29)
u(x , y , 0) = f (x , y) ( 1 30)
u(x , y , t) = 0 x2 + y2 = 1 . ( 1 31 )

which leads to “basic” solutions of the form

R( r) Θ ( θ ) T( t) ( 1 32 )

where R solves

r2 R ′′ + r R ′ +
(
λ r2 − n2

)
R = 0 , ( 1 33)

with the boundary condition

R( 0) bounded, R( 1 ) = 0 . ( 1 34)

We have seen that the above equation can be written into the Sturm-Liouville system

( r R ′) ′ − n
2

r
R + λ r R = 0 ( 1 35)

which means that after detemining the eigenvalues λm and the corresponding eigenfunctions Rn , m , we can
expand any function of r into

f ( r) =
∑

m

Am Rn , m( r) ( 1 36)

with

Am =

∫

0

1

f ( r) Rn , m( r) r dr

∫

0

1

Rn , m( r) 2 r dr

. ( 1 37)

One problem to this approach is that neither λm nor Rn , m has a formula. However, we can qualitatively
solve the equation as follows.



First we determine the general solutions. Notice that, if R( r) solves the following equation

r2 R ′′ + r R ′ +
(
r2 − n2

)
R = 0 , ( 1 38)

then we have ( replacing each r by λ
√

r)
(

λ
√

r
) 2
R ′′

(
λ
√

r
)

+
(

λ
√

r
)
R ′
(

λ
√

r
)

+

( (
λ
√

r
) 2
− n2

)
R
(

λ
√

r
)

= 0 ( 1 39)

which means Rλ ( r) ≡ R
(

λ
√

r
)
solves

r2 Rλ
′′ + r Rλ

′ +
(
λ r2 − n2

)
Rλ = 0 . ( 1 40)

Therefore we first consider the singular SL equation

x2 y ′ ′ + x y ′ +
(
x2 − ν2

)
y = 0 ( 1 41 )

where ν is a non-negative real number. We have seen that this is closely related to solving equations
involving the 2D Laplacian ∂x x + ∂yy in a disc.

As we have mentioned, it is not possible to obtain a formula for the solutions. We have to rely on the
so-called Frobenius method: We search for solutions of the form

y( x) =
∑

n= 0

∞
an xs+n ( 1 42 )

with s to be determined.
Substituting this formula into the equation, we obtain

0 = x2 y ′ ′ + x y ′ +
(
x2 − ν2

)
y

= x2

( ∑

n= 0

∞
an ( s + n) ( s + n − 1 ) xs+n− 2

)

+ x

( ∑

n= 0

∞
an ( s + n) xs+n− 1

)
+
(
x2 − ν2

)
( ∑

n= 0

∞
an x

s+n

)

=
∑

n= 0

∞
an ( s + n) ( s + n − 1 ) xs+n +

∑

n= 0

∞
an ( s + n) xs+n

+
∑

n= 2

∞
an− 2 x

s+n −
∑

n= 0

∞
ν2 an x

s+n

=
∑

n= 0

∞
an

[
( s + n)

2 − ν2
]
xs+n +

∑

n= 2

∞
an− 2 xs+n

=
(
s 2 − ν2

)
a0 x

s +
[

( s + 1 )
2 − ν2

]
a1 x

s+ 1 +
∑

n= 2

∞ {
an

[
( s + n)

2 − ν2
]

+ an− 2

}
xs+n . ( 1 43)

Therefore the solution should satisfy
(
s 2 − ν2

)
a0 = 0 ( 1 44)[

( s + 1 )
2 − ν2

]
a1 = 0 ( 1 45)

an
[

( s + n)
2 − ν2

]
+ an− 2 = 0 n = 2 , 3 , � ( 1 46)

As we are discussing the general case here, we assume a0

�
0 . As a consequence,

s 2 = ν2 �
s = ± ν. ( 1 47)

We see that close to x = 0 , the solution behaves as either xν or x− ν . The former satisfies y( 0) = 0 while
the latter is unbounded. Thus we discuss the two cases separately.

− s = ν .



In this case, ( s + n)
2 �

ν2 for all n > 0 . Consequently we have

a1 = 0 ( 1 48)

a2 = − a0

2 ( 2 ν + 2)
( 1 49)

a3 = − a1

3 ( 2 ν + 3)
= 0 ( 1 50)

a4 = − a2

4 ( 2 ν + 4)
( 1 51 )

�

a2n = − a2n− 2

2 n ( 2 ν + 2 n)
= − a2n− 2

4 n ( ν + n)
, ( 1 52 )

a2n+ 1 = 0 ( 1 53)
�

From the above we have the formula

a2n =
( − 1 )

n a0

4n n ! ( ν + n) � ( ν + 1 )
. ( 1 54)

The formula for y(x ) is then

y(x ) = a0

∑

n= 0

∞
( − 1 )

n

4n n ! ( ν + n) � ( ν + 1 )
x2n+ ν . ( 1 55)

This is called the Bessel function of the first kind of order ν , denoted by Jν (x ) .

− s = − ν .
In this case

( s + n)
2 − ν2 = ( − ν + n)

2 − ν2 = n2 − 2 n ν = 0 ( 1 56)

when n = 2 ν . Thus we discuss two cases.

→ 2 ν is not an integer. In this case none of ( s + n)
2 − ν2 is 0 unless n = 0 . Thus we have the

interative relation

a2 n =
− a2n− 2

2 n ( 2 n − 2 ν )
=
− a2n− 2

4 n (n − ν )
= � =

( − 1 )
n a0

4n n ! (n − ν ) � ( 1 − ν )
, a2n− 1 = 0 . ( 1 57)

Thus

J− ν ( x) ≡ y( x) = a0

∑

n= 0

∞
( − 1 )

n a0

4n n ! (n − ν ) � ( 1 − ν )
x2n− ν . ( 1 58)

→ 2 ν is an integer.

→ ν is an integer. For convenience we denote ν by m0 . Then from

an
[

( s + n)
2 − ν2

]
+ an− 2 = 0 ( 1 59)

we have

a2m0− 2 = 0 � a2m0− 4 = 0 � a0 = 0 . ( 1 60)

On the other hand, the same iteration process gives a2n− 1 = 0 for all n > 0 . As a con-
sequence, the first term in the series is actually x2m0− ν = xν . In other words, when ν
is an integer, the solution for s = − ν is regular. In fact one can show that the solu-
tion J− n(x ) is simply ( − 1 )

n
Jn(x ) .

→ ν is not an integer but 2 ν is. Thus necessarily 2 ν is odd, denote it by 2 n0 − 1 . In
this case, using the iteration relation

an
[

( s + n)
2 − ν2

]
+ an− 2 = 0 ( 1 61 )



we can show that a2n− 1 = 0 for all n < n0 . Now if we define

J− ν ( x) ≡ y( x) = a0

∑

n= 0

∞
( − 1 )

n a0

4n n ! (n − ν ) � ( 1 − ν )
x2n− ν , ( 1 62 )

it can be shown that the solution y(x ) is in fact a linear combination of J− ν and Jν .

Summarizing, we have

J− ν (x ) ≡ y(x ) = a0

∑

n= 0

∞
( − 1 )

n a0

4n n ! (n − ν ) � ( 1 − ν )
x2n− ν ( 1 63)

when ν is not an integer, and

J− ν (x ) = ( − 1 )
n
Jν (x ) ( 1 64)

when ν is an integer.

Recall that our purpose is to find out the general behavior of the solutions to the Bessel equation

x2 y ′′ + x y ′ +
(
x2 − ν2

)
y = 0 . ( 1 65)

When ν is not an integer, we have two linear independent solutions J± ν therefore the general solution can
be written as

y( x) = A Jν (x ) + BJ− ν ( x) . ( 1 66)

However when ν is an integer, J± ν are linearly dependent of each other and we have to find another solu-
tion which is linearly independent of Jν .

To remedy this, we define

Yν (x ) =
( cos ν π) Jν ( x) − J− ν ( x)

sin ν π
, ( 1 67)

which should be explained as the limit ν→ n when ν is an negative integer. That is

Y− n = lim
ν→ n

Y− ν . ( 1 68)

It turns out that Jν and Yν are always linearly independent. That is

y( x) = A Jν ( x) + BYν (x ) . ( 1 69)

The coefficients A, B are determined by the boundary conditions, taking advantage of the fact that
Jν ( 0) = 0 , Yν ( 0) = ∞ .

Recall our example which leads to the discussion of Sturm-Liouville problems: Consider the heat equa-
tion in a 2D disc x2 + y2 6 1 :

ut = κ (ux x + uyy) ( 1 70)
u(x , y , 0) = f (x , y) ( 1 71 )
u(x , y , t) = 0 x2 + y2 = 1 . ( 1 72 )

Separating the variables in polar coordinates

u(x , y , t) = R( r) Θ ( θ ) T( t) ( 1 73)

we reach the following problem for R :

r2 R ′′ + r R ′ +
(
λ r2 − n2

)
R = 0 , ( 1 74)

with the boundary condition

R( 0) bounded, R( 1 ) = 0 . ( 1 75)

We know that the general solution is of the form

R( r) = A Jn
(

λ
√

r
)

+ BYn
(

λ
√

ρ
)
. ( 1 76)



To determine the coefficients we need the boundary conditions. Besides R( 1 ) = 0 , we need to specify
another condition at r = 0 . The reasonable one is R( 0) being bounded.

As Yn( 0) = ∞ , the boundary conditions become

R( 0) bounded � B = 0 , ( 1 77)

R( 1 ) = 0 � Jn
(

λ
√ )

= 0 � λ = λn , n = 1 , 2 , 3 , � ( 1 78)

Thus the solutions are

Rn( r) = Jn
(

λn
√

r
)
, n = 1 , 2 , 3 , � ( 1 79)

Example 9. ( § 1 0. 1 3 1 5) Solve the heat conduction problem in a circular plate

ut = k

(
ur r +

1

r
ur +

1

r2
uθ θ

)
, r < 1 , 0 < θ < 2 π , t > 0 , ( 1 80)

u( r , θ , 0) = f ( r , θ ) , u( 1 , θ , t) = 0 . ( 1 81 )

Solution. We solve the problem using separation of variables.
First we search for “basic” solutions which are non-zero and of the form

u = R( r) Θ ( θ ) T( t) . ( 1 82 )

Substituting this into the equation we obtain

R( r) Θ ( θ ) T ′( t) = k

(
R ′′( r) Θ ( θ ) T( t) +

1

r
R ′( r) Θ ( θ ) T( t) +

1

r2
R( r) Θ ′′( θ ) T( t)

)
. ( 1 83)

Divide by R( r) Θ ( θ ) T( t) we obtain

T ′( t)
T( t)

= k

[
R ′′( r)
R( r)

+
1

r

R ′( r)
R( r)

+
1

r2

Θ ′′( θ )
Θ ( θ )

]
. ( 1 84)

As the LHS is a function of t only and the RHS a function of r , θ only, there is a constant − λ such that

T ′( t)
T( t)

= − k λ , R ′′( r)
R( r)

+
1

r

R ′( r)
R( r)

+
1

r2

Θ ′′( θ )
Θ ( θ )

= − λ . ( 1 85)

Now multiply the R, Θ equation by r2 , we reach

r2 R ′ ′( r)
R( r)

+
r R ′( r)
R( r)

+
Θ ′ ′( θ )
Θ ( θ )

= − λ r2 � r2 R ′′( r)
R( r)

+
r R ′( r)
R( r)

+ λ r2 = − Θ ′′( θ )
Θ ( θ )

. ( 1 86)

Now the LHS is a function of r only while the RHS a function of θ only. Therefore there is another con-
stant µ such that

r2 R ′ ′( r)
R( r)

+
r R ′( r)
R( r)

+ λ r2 = µ ,
Θ ′′( θ )
Θ ( θ )

= − µ. ( 1 87)

Summarizing, we have the following equations to solve ( and along the way determine λ , µ) :

T ′( t)
T( t)

= − k λ , with T( 0) to be specified; ( 1 88)

Θ ′′( θ )
Θ ( θ )

= − µ , Θ periodic with period 2 π ; ( 1 89)

r2 R ′′( r)
R( r)

+
r R ′( r)
R( r)

+ λ r2 = µ, R( 1 ) = 0 . ( 1 90)

It is clear that we should first solve the Θ equation. We have

Θ ′′( θ ) + µ Θ( θ ) = 0 , Θ periodic with period 2 π. ( 1 91 )



The boundary condition can also be written as

Θ( 0) = Θ( 2 π) , Θ ′( 0) = Θ ′( 2 π) ( 1 92 )

as this, together with the equation, guarantees Θ ( k ) ( 0) = Θ ( k ) ( 2 π) for all k which in turn guarantees peri-
odicity.

We discuss the three cases.

i. µ < 0 . The general solution is

Θ = A e − µ
√

θ + B e− − µ√
θ ( 1 93)

which cannot be periodic unless A = B = 0 .

i i . µ = 0 . The general solution is

Θ = A + B θ ( 1 94)

which again cannot be periodic unless A = B = 0 .

iii . µ > 0 . The general solution is

Θ = A cos µ
√

θ + B sin µ
√

θ ( 1 95)

which is 2 π-periodic if and only if

µ = n2 ( 1 96)

for some integer n . As the cosine function is even and the sine function is odd, it suffices to con-
sider the case n > 0 .

Thus the possible ( µ, Θ) pairs are

µn = n2 , Θn = cos n θ and sin n θ . ( 1 97)

Now that we have µ , we turn to the equation for R . Replacing µ by n2 we have

r2 R ′′( r)
R( r)

+
r R ′( r)
R( r)

+ λ r2 = n2 , R( 1 ) = 0 ( 1 98)

which becomes

r2 R ′′( r) + r R ′( r) +
(
λ r2 − n2

)
R( r) = 0 , R( 1 ) = 0 . ( 1 99)

The theory of Bessel functions tells us that

R( r) = A Jn
(

λ
√

r
)

+ BYn
(

λ
√

r
)

( 200)

where Jn and Yn are Bessel functions of the first and the second kinds or order n .
Integrating the boundary condition R( 0) bounded, we conclude B = 0 . On the other hand, requiring

R( 1 ) = 0 leads to λ = λm where λm
√

is the m-th root of Jn . Therefore the possible (λ , R) pairs are

λm , Rm = Jn
(

λm
√

r
)
. ( 201 )

Finally we solve the equation for T . For each λm , solving

T ′( t)
T( t)

= − k λm . ( 202 )

would give us a function Tm and finally the solution can be written as a sum

u( r , θ , t) =
∑

m= 1

∞ ∑

n= 0

∞
[Tm, n , 1 ( t) cos(n θ ) + Tm, n , 2 ( t) sin(n θ ) ] Jn

(
λm
√

r
)
. ( 203)

Setting t = 0 we have

f ( r , θ ) =
∑

m= 1

∞ ∑

n= 0

∞
[Tm, n , 1 ( 0) cos(n θ ) + Tm, n , 2 ( 0) sin(n θ ) ] Jn

(
λm
√

r
)
. ( 204)



To obtain these initial values, notice that Jn
(

λm
√

r
)
depens on both indices while sin(n θ ) and cos(n θ )

only depends on n , we first expand

f ( r , θ ) =
∑

n= 0

∞
[ fn , 1 ( r) cos(n θ ) + fn , 2 ( r) sin(n θ ) ] ( 205)

with

fn , 1 ( r) =





1

2 π

∫

0

2 π

f ( r , θ ) dθ n = 0

1

π

∫

0

2 π

f ( r , θ ) cos(n θ ) dθ n > 0

, fn , 2 ( r) =
1

π

∫

0

2 π

f ( r , θ ) sin(n θ ) dθ . ( 206)

Now writing

f ( r , θ ) =
∑

m= 1

∞ ∑

n= 0

∞
[Tm, n , 1 ( 0) cos(n θ ) + Tm, n , 2 ( 0) sin(n θ ) ] Jn

(
λm
√

r
)

( 207)

=
∑

n= 0

∞ {[ ∑

m= 1

∞
Tm, n , 1 ( 0) Jn

(
λm
√

r
)
]
cos(n θ ) +

[ ∑

m= 1

∞
Tm, n , 2 ( 0) Jn

(
λm
√

r
)
]
sin(n θ ) . ( 208)

Therefore

fn , 1 ( r) =
∑

m= 1

∞
Tm, n , 1 ( 0) Jn

(
λm
√

r
)

( 209)

and

fn , 2 ( r) =
∑

m= 1

∞
Tm, n , 2 ( 0) Jn

(
λm
√

r
)
. ( 21 0)

Recalling the orthogonality property
∫

0

1

Jn
(

λm
√

r
)
Jn
(

λk
√

r
)
r dr = 0 , ( 21 1 )

we conclude

Tm, n , 1 ( 0) =

∫

0

1

fn , 1 ( r) Jn
(

λm
√

r
)
r dr

∫

0

1

Jn
(

λm
√

r
) 2
r dr

, m = 1 , 2 , � ( 21 2 )

and

Tm, n , 2 ( 0) =

∫

0

1

fn , 2 ( r) Jn
(

λm
√

r
)
r dr

∫

0

1

Jn
(

λm
√

r
) 2
r dr

, m = 1 , 2 , � ( 21 3)

Now inserting the formulas for fn , 1 ( r) and fn , 2 ( r) , we reach

Tm, n , 1 ( 0) = am, n , 1 =





∫

0

2 π ∫

0

1

f ( r , θ ) J0

(
λm
√

r
)
r dr

2 π

∫

0

1

J0

(
λm
√

r
) 2
r dr

n = 0

∫

0

2 π ∫

0

1

f ( r , θ ) Jn
(

λm
√

r
)
r cos(n θ ) dr dθ

π

∫

0

1

Jn
(

λm
√

r
) 2
r dr

n > 1

, ( 21 4)

Tm, n , 2 ( 0) = am, n , 2 =

∫

0

2 π ∫

0

1

f ( r , θ ) Jn
(

λm
√

r
)
r sin(n θ ) dr dθ

π

∫

0

1

Jn
(

λm
√

r
) 2
r dr

. ( 21 5)



Solving
T ′( t)
T( t)

= − k λm, n , 1 and − k λm, n , 2 ( 21 6)

with initial values am, n , 1 and am, n , 2 we obtain

Tm, n , 1 ( t) = am, n , 1 e− k λm t , Tm, n , 2 ( t) = am, n , 2 e− k λm t . ( 21 7)

Finally, putting everything together, we reach

u( r , θ , t) =
∑

m= 1

∞ ∑

n= 0

∞
[am, n , 1 cos(n θ ) + am, n , 2 sin(n θ ) ] Jn

(
λm
√

r
)
e− k λm t ( 21 8)

with

am, n , 1 =





∫

0

2 π ∫

0

1

f ( r , θ ) J0

(
λm
√

r
)
r dr

2 π

∫

0

1

J0

(
λm
√

r
) 2
r dr

n = 0

∫

0

2 π ∫

0

1

f ( r , θ ) Jn
(

λm
√

r
)
r cos(n θ ) dr dθ

π

∫

0

1

Jn
(

λm
√

r
) 2
r dr

n > 1

, ( 21 9)

am, n , 2 =

∫

0

2 π ∫

0

1

f ( r , θ ) Jn
(

λm
√

r
)
r sin(n θ ) dr dθ

π

∫

0

1

Jn
(

λm
√

r
) 2
r dr

. ( 220)

The formula above is the same as the one in the book given on page 733. The equivalence follows from
( 8. 6. 30) .

3. 2 . Legendre function.
Legendre functions arise from PDEs on domains with sperical symmetry. 1

Example 1 0. We consider the Laplace equation in a sphere:

ux x + uyy + uz z = 0 x2 + y2 + z2 < a2 , ( 223)
u = f x2 + y2 + z2 = a2 . ( 224)

Consider the case where f = f ( θ ) is independent of the longitudinal coordinate φ in the spherical coordi-
nates

r = x2 + y2 + z2
√

, 0 < θ < π, 0 < φ < 2 π. ( 225)

In this case u is also a function of r , θ only.
The problem now becomes

(
r2 ur

)
r

+
1

sin θ
[ ( sin θ ) uθ ] θ = 0 , ( 226)

u( a , θ ) = f ( θ ) . ( 227)

1 . Spherical coordinates. Consider a vector in R3 ( x -y-z space) . Let r be its length , and let θ be the angle between
this vector and the z-axis . Then the projection of this vector onto the x -y plane is r sin θ . Now we introduce a second angle
ϕ which is the angle in the polar coordinates of the x -y plane. Thus we have

x = r cosϕ sinθ , y = r sinϕ sinθ , z = r cosθ ( 22 1 )

with r > 0 , 0 6 ϕ < 2 π, 0 6 θ < π .
One can also try to make θ measuring the ( signed) angle between the vector and the x -y plane, in that case the change-

of-variable relation changes to

x = r cosϕ cosθ , y = r sinϕ cosθ , z = r sinθ . ( 22 2 )

This means the spherical coordinate form of ux x + uy y + uz z also changes.



We look for a “basic” solution with separated variables

u( r , θ ) = R( r) Θ ( θ ) . ( 228)

Substituting into the equation, we have

1

R

(
r2 R ′

) ′
= − 1

Θ sin θ
[ ( sin θ ) Θ ′ ] ′ . ( 229)

Thus there is a constant λ such that
(
r2 R ′

) ′ − λ R = 0 , 0 < r < a ( 230)

[ ( sin θ ) Θ ′ ] ′ + λ ( sin θ ) Θ = 0 , 0 < θ < π. ( 231 )

The R equation can be solve through the following. Write the equation as

r ( r R ′) ′ + r R ′ − λ R= 0 , ( 232 )

and set

x = ln r. ( 233)

Then we have
dR

dr
=

dR

dx

dx

dr
= r− 1 dR

dx
� r R ′ =

dR

dx
( 234)

therefore the equation becomes
d2R

dx2
+

dR

dx
− λ R = 0 ( 235)

whose general solution is

R( r) = A rν + B r− ( 1 + ν ) ( 236)

with

ν =
− 1 + 1 + 4 λ

√

2
solves ν2 + ν − λ = 0 . ( 237)

For the Θ equation, a change of variable and unknown

x = cos θ , y(x ) = Θ ( θ ) ( 238)

leads to
dΘ

dθ
=

dy

dx

dx

dθ
= y ′ ( − sin θ ) ( 239)

therefore

d

dθ
[ ( sinθ ) Θ ′ ] =

d

dθ

[ (
− sin2θ

)
y ′
]

=
d

dx

[ (
x2 − 1

)
y ′
] dx

dθ
=
[ (
x2 − 1

)
y ′
] ′

( − sin θ ) . ( 240)

Thus the equation becomes
[ (

1 − x2
)
y ′
] ′

+ λ y = 0 ( 241 )

which can be expanded to
(

1 − x2
)
y ′ ′ − 2 x y ′ + λ y = 0 , − 1 < x < 1 . ( 242 )

or equivalently
(

1 − x2
)
y ′ ′ − 2 x y ′ + ν ( ν + 1 ) y = 0 , − 1 < x < 1 ( 243)

as

ν [ − ( 1 + ν ) ] = − λ. ( 244)

The solutions are called Legendre functions.

Remark 1 1 . When the problem is not independent of the variable ϕ , the resulting Θ equation would
lead to the so-called “associated Legendre functions”.



The Legendre equation reads
(

1 − x2
)
y ′ ′ − 2 x y ′ + ν ( ν + 1 ) y = 0 . ( 245)

We search for solutions of the form

y(x ) =
∑

m= 0

∞
am xm . ( 246)

Substituting into the equation and collecting the same powers, we have

∑

m= 0

∞
[ (m + 1 ) (m + 2) am+ 2 + ( ν − m) ( ν + m + 1 ) am ] xm = 0 . ( 247)

As a consequence, we must have

am+ 2 = − ( ν − m) ( ν + m + 1 )

(m + 1 ) (m + 2)
am , m > 0 . ( 248)

Iterating, we have the formulas for the coefficients

a2 k =
( − 1 )

k ν ( ν − 2) � ( ν − 2 k + 2) ( ν + 1 ) ( ν + 3) � ( ν + 2 k − 1 )

( 2 k ) !
a0 , ( 249)

a2 k+ 1 =
( − 1 )

k
( ν − 1 ) ( ν − 3) � ( ν − 2 k + 1 ) ( ν + 2) ( ν + 4) � ( ν + 2 k )

( 2 k + 1 ) !
a0 . ( 250)

It can be shown that when n is an integer, the solution is a sum of one polynomial of order n , and an
infinite series solution. The polynomial solution is denoted Pn(x ) , and called the Legendre polynomial of
degree n or the Legendre function of the first kind of order n . The infinite series is denoted Qn( x) and
called the Legendre function of the second kind .

Therefore the general solutions to the Legendre equation are

y(x ) = APν ( x) + BQ ν ( x) . ( 251 )

In practice one usually requires y(x ) to be bounded at x = ± 1 , this is true if and only if ν = n is an
integer and B = 0 , that is

y( x) = Pn( x) ( 252 )

A simple formula for the Legendre polynomials is

Pn( x) =
1

2n n !

dn

dxn

[ (
x2 − 1

) n ]
. ( 253)

From this the first few Legendre polynomials can be easily computed as

P0 ( x) = 1 ( 254)
P1 ( x) = x ( 255)

P2 ( x) =
1

2

(
3 x2 − 1

)
( 256)

P3 ( x) =
1

2

(
5 x2 − 3 x

)
. ( 257)

From the Sturn-Liouville theory, we know that Pn( x) enjoys the orthogonality relation
∫

− 1

1

Pn( x) Pm( x) dx = 0 n
�
m. ( 258)

Or equivalently ∫

0

π

Pn( cosθ ) Pm( cosθ ) sinθ dθ = 0 n
�
m. ( 259)

Now we state one fact that is very useful when solving equations. Observe that any polynomial of degree
k can be represented as a linear combination of the first k Legendre polynomials. Therefore the orthogo-
nality condition leads to ∫

− 1

1

Pn( x ) p(x ) dx = 0 ( 260)



for any polynomial p(x ) with degree k < n .
Finally it can be shown that ∫

− 1

1

Pn
2 (x ) dx =

2

2 n + 1
( 261 )

therefore the coefficients in

f (x ) =
∑

0

∞
An Pn(x ) ( 262 )

is determined by

An =

∫

− 1

1

f ( x) Pn( x) dx

∫

− 1

1

Pn(x ) 2 dx

=
2 n + 1

2

∫

− 1

1

f (x ) Pn(x ) dx. ( 263)

Example 1 2 . ( § 1 0. 1 3 5) Find the solution of the Dirichlet problem for a sphere

∇2u = 0 , r < a , 0 < θ < π , 0 < ϕ < 2 π ( 264)

u( a , θ , ϕ ) = cos2θ . ( 265)

Solution. As the boundary value is cos2θ which is independent of ϕ , and furthermore the Laplacian oper-
ator is invariant with respect to translations in ϕ , the solution is also independent of ϕ , that is u = u( r ,
θ ) .

In this case the equation becomes
(
r2 ur

)
r

+
1

sin θ
[ ( sin θ ) uθ ] θ = 0 , ( 266)

u( a , θ ) = cos2 ( θ ) . ( 267)

Setting u = R( r) Θ ( θ ) , we reach

1

R

(
r2 R ′

) ′
= − 1

Θ sin θ
[ ( sin θ ) Θ ′ ] ′ . ( 268)

Thus there is a constant λ such that
(
r2 R ′

) ′ − λ R = 0 , 0 < r < a ( 269)

[ ( sin θ ) Θ ′ ] ′ + λ ( sin θ ) Θ = 0 , 0 < θ < π. ( 270)

Setting

x = cos θ , y(x ) = Θ ( θ ) ( 271 )

we have
(

1 − x2
)
y ′ ′ − 2 x y ′ + λ y = 0 , − 1 < x < 1 . ( 272 )

Therefore

λn = n (n + 1 ) , yn = Pn(x ) , n = 0 , 1 , 2 , � ( 273)

Returning to θ , we have

λn = n (n + 1 ) , Θn( θ ) = Pn( cos θ ) , n = 0 , 1 , 2 , � ( 274)

Now back to the R equation we have

R( r) = A rn + B r− (n+ 1 ) ( 275)

where B is forced to 0 as we require R( 0) to be bounded.
Finally the solution can be written as

∑

n= 0

∞
An r

n Pn( cos θ ) . ( 276)



To determine An we use the boundary value. Setting r = a we have

cos2θ =
∑

n= 0

∞
An an Pn( cosθ ) ( 277)

or equivalently

x2 =
∑

n= 1

∞
An a

n Pn(x ) . ( 278)

The coefficients are computed by

An a
n =

2 n + 1

2

∫

− 1

1

x2 Pn( x) dx. ( 279)

As x2 is a polynomial of degree 2 , we immediately know that An = 0 for all n > 3 . Now we compute

A0 =
1

2

∫

− 1

1

x2 dx =
1

3
; ( 280)

A1 a =
3

2

∫

− 1

1

x3 dx = 0; ( 281 )

A2 a2 =
5

2

∫

− 1

1 1

2

(
3 x2 − 1

)
x2 dx =

1 5
4

∫

− 1

1

x4 dx − 5

4

∫

− 1

1

x2 dx =
3

2
− 5

6
=

2

3
. ( 282 )

Finally we have

u( r , θ ) =
1

3
P0 ( cosθ ) +

2

3

r2

a2
P2 ( cosθ ) ( 283)

We can further simplify it to

u( r , θ ) =
1

3
+

1

3

r2

a2

(
3 cos2θ − 1

)
=

1

3

(
1 − r2

a2

)
+
r2

a2
cos2θ . ( 284)

This formula is simple so we can actually check that it solves the equation and also satisfies the boundary
condition.


