WEEK 03: CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS

In last week’s lectures we have illustrated how to obtain the general solutions of first order PDEs using
the method of characteristics. We will try to do the same thing for second order PDEs. It turns out that
only a small portion of linear 2nd order PDEs can be solved in the sense of obtaining general solutions.

For simplicity, we will only consider 2nd order equations in two independent variables, whose general
form is

Atgr+ Bugy+Cuyy+Dug+Euy+ Fu=G. (1)

where each coefficient A, B, C, ... is a function of z, y.
It turns out that one can simplify the 2nd order terms to one of the following three so-called “canon-
ical” forms

1. hyperbolic: ugy O Upr — Uyy;
2. parabolic: uzg O Uyy;
3. elliptic: ugz + Uyy-

Not only the method of finding solutions, but also the properties of the equations/solutions are very dif-
ferent for each category.

1. Reduction to canonical forms.

1.1. General strategy.
The idea is to apply a change of variables

§=¢&(x,y),  n=n(z,y). (2)
This gives
Uy = u£§w+unnmu (3)
uy = ugy+unny, (4)
Uge = u&”g%"'?u&n&cnm"_unnﬁ%"'”&&cm"‘”n”wma (5)
Ugy = Uge&a &yt ten (§o My + EyMa) + Unn e Ny + e Eay + Up Moy, (6)
Uyy = “55573"‘2“57751/771/"’unn”i"‘uﬁgyy"‘unnyy- (7)
Remark 1. How to remember the above formulas:
Substituting these into the equation we obtain
A*uge + B*uen + C* upy + D*ue + E*upy+ F*u=G". (8)
with
B* = 2A§wny+B(gmny+§ynm)+205ynyu (10)
Cc* = Anﬁ—i—Bnmny—l—Cni, (11)
D* = A&+ B&y+C8y+ D&+ EE,, (12)
E* = Anga+ Bney+ Cnyy+ Dne+ Eny, (13)
= F, (14)
G* = G. (15)

Now recall that our purpose is to reduce the equation to canonical form. In other words, we would explore
the possibility of choosing appropriate £, n such that

1. A*=C*=0, B*#0, or
2. B*=0, exactly one of A* and C*=0, or
3. A*=C*#0, B*=0.



Remark 2. Can it happen that A* = B* = C* =07 In principle, it is possible. But that just means that
the equation is in fact just first order.

1.2. Hyperbolic case.
If the equation can be reduced to the hyperbolic canonical form, then we should be able to find &, 7
such that

2
A*=AE+BE&E+CE=0 = A(%) +B<§l>+c_0, (16)
and Y Y
2
C*=An2+ Bnny+Cni=0 = A(ﬁ) +B(ﬁ)+c_0. (17)
‘ Ny My
We have

1. Since £, n must be independent, the equation
A+ B(+C=0 (18)

must admit two different solutions. As a consequence the equation can be reduced to the hyper-
bolic canonical form only when

B2-4AC>0. (19)
2. Consider the function £ =&(z, y), what does the ratio r =,/ tell us? One easily sees
& —1&y=0. (20)

But this is just a first order PDE for £! Thus we can solve it (and obtain £) using the method of
characteristics:

de dy du

1 —r 0 #1)
which can be simplified to

dy &

3. Integrating this, we can obtain £ and similarly 7.

From the above discussion we see that when B2 —4 A C > 0, we can obtain ¢ and 7 and reduce the equa-
tion to

Ugn= H. (23)
If we let
a=E+n, B=E(—n, (24)
the equation becomes
uaa—u55=H1. (25)

1.3. Parabolic case.
In this case we obtain B*=0 and one of A*, C*=0. This gives

(B*)* —4 A* C*=0. (26)
One can check that as a consequence
B2-4AC=0. (27)

which means we can only obtain one function (either £ or 1) by solving

Note that onece A* =0, B* has to be 0.
The canonical form is

uge = Ho(&, m,u, ug, Uy). (29)
1.4. Elliptic case.



The remaining case is B2—4 AC < 0. In this case we can obtain two complex roots. In other words

*
So _ <E> , (30)
&y U
We see that this holds when £ and 7 are complex conjugates.
In this case, we can introduce new variables

a=%(§+n), ﬁz%@—n) (31)
or equivalently

E=a+pi, n=a-—pFi. (32)

Using the change of variables formula we have
Uaa +Ugg=4Uugy (33)

as a consequence, the canonical form in real variables «, 3 is
Uaa +ugs = Hs(a, B,u, uq, ug). (34)

Remark 3. In practice, it is easier to obtain o = a(x, y), 8 = (=, y) and then transform the equation,
without first reducing the equation into ug¢, = Hj.

1.5. Examples.

Summary: To solve a 2nd order linear PDE, we follow the following steps.
1. Solve A Uy + B gy + Cuyy = A (dy)’ — B (dz) (dy) + C (dz)* = 0. Note the sign change.!
Obtain
a) new variables ¢ and  when B%2—4 AC >0 (hyperbolic);

x

b) new variable £, choose any 7 with det( fzm fzy )# 0, when B? —4 AC =0 (parabolic);

¢) two complex functions & and 7, set o = (£ + 1)/2, 8= (£ — n)/2 i as new variables, when
B2 —4AC <0 (elliptic).

2. Perform change of variables and reduce the equation to canonical forms using the following for-
mulas:

Up = Ugp+ UnTa, (39)
Uy = ugy+unny, (40)
Upoy = ee&r+2UgyEa e+ Uny M+ Ue Eaa + Uy o, (41)
Ugy = Uge&a &yt ten (§o My + EyMa) + Unn e Ny + e Eay + Up Moy, (42)
Uyy = “5&573"‘2“57751/771/"’unn”i"‘u&fyy"‘unnyy- (43)

3. Try to obtain the general solution of the canonical form equation.

4. (For Cauchy problems) Substitute the Cauchy data into the general solution and determine the
solution.

1. We explain a bit. Remember that g— and Z— solve

v v
Ar?24+ Br+C=0. (35)
Let r1, 72 be the two roots, then the equation can be written as
A(r—r1)(r—r2)=0 = B=—A(r1+mr2), C=Arira. (36)
Now as %: — 171, — T2, they solve the equation
A(r+m1)(r+712)=0 < Ar?—Br+C=0. (37)

In other words, dy,dz satisfy
A (dy)? - B (dz) (dy) + C (dz)*=0. (38)



Example 4. (8§4.6, 1) Determine the region in which the given equation is hyperbolic, parabolic, or
elliptic, and transform the equation in the respective region to canonical form.

e (a)

TUgg + Uyy =22 (44)

Solution. We have A=x,B=0,C =1. Thus

B?2-4AC=—4x. (45)
— < 0: Hyperbolic.
We solve
z (dy)® + (dz)*=0. (46)
This gives

de +v/—2dy=0 (47)
which leads to
d[yj:2\/—_x]20 (48)
therefore
E=y+2v-z, n=y-2V-z (49)

which gives
1 1

Co=——F7—= &=L CGo=——FF—=3 &y=0, &=0; (50)
M=y My =1, Mpam . Dy =0, 7y =0 (51)
T \/_—Ia Y ) xxT 2( —:E)37 Yy ’ yy :
We compute
_ __ uge | 2Ugy  Upy | Up—Ug
Uspe = Uge §5 + 2 Ugy Ea Mo + Uny Mz + Ug Eop + Up oo = — —= + —2 — L1 4 1S
133 &n m 3 n z - - 2(\/__3:)3
(52)
_ _ Unn — Uge 53
Ugy = Uge&a &yt Uey (Sa My + EyMa) + Uy N Ny + U oy + UnyNay=——, (53)
V-
Uyy = UEE§12/+2UEn§y77y+Unn7712/+U&ﬁw"‘“nnyy:u&&"'2“577"'“7777- (54)
Thus the equation becomes
Augy+ =20 — g2, (55)

From the change of variables we obtain

a.nd as a consequence
C1fe—-n\* 1/ 1
u&n—Z<T) §<m) (ug — uy). (57)

— 2 =0: parabolic. In this case the equation becomes
Uyy = 22 (58)
which is already in canonical form.

— x> 0: elliptic. In this case we still have

z (dy)® + (dz)*=0. (59)



which gives
tiyrdy+dr=0 = d[2\/5:|:iy} =0.
Thus
E=2\x+1y, n=2r—1y.
We then have

a:i2n22\/5, ﬂzg__n:y.

This leads to
1 1

= =0 Tr— T T — 3
\/57 Ay y & 2(\/5)3

= Opy=0, ayy=0,

Consequently
Una U

«
Upp=———"—=3,  Uyy=Upp
r 2z

and the equation becomes

uaa—i—uw:ﬁ—i—%:%—k (%)4.
e (d)
T2 Upy — 2T YUy + Y2 Uyy = €%
Solution. We have
B?2-4AC=0
So the equation is of parabolic type. We solve the characteristics equation
22 (dy)® =2z ydedy + y2 (dz)* =0
which reduces to

(:Cdy+ydx)2=O = {=xy.

det( S &y )_det( y )
Ne Ny Nz My

We can take for example =2 to make the Jacobian nonzero. We have
=Y, §y=1, &2=0, &y=1, &,=0,

Ne=1, Ny ="Nee="Ngy="1yy=0.

Thus the Jacobian is

Thus we have
Upw = Y2 Uge + 2 Y Ugy + % Uy, Usy =T YUuge +T Uy +Ug, Uyy =17 uge
which leads to
x4u,m—2a:yu£:e””.

So the canonical form is

2. Equations with constant coefficients.

When the coefficients A— F' are constants, sometimes it is possible to find the general solution after

reduction to canonical forms. In particular, we can obtain general solutions when D—G =0.

Example 5. Find the general solution of the 2nd order PDE
Atgy+ Bugy+Cuyy=0



where A, B,C are constants.?
Solution. We deal with the three cases individually.

1. B2—4AC>0. We have

dy  B+VB’—4AC
==X\ 2=
dzx 2A

which gives
E=y— Mz, n=y— Xz
The equation becomes
Uen =10
whose general solutions are

u=¢(&)+v(n)=o(y—Aiz)+Y(y— ).

(There is a typo in the book here).
In the case A =0, we use &,/&, instead of £;/¢, to obtain

¢ AW _ ___B
B<§—z)+0<§—z) =0 = (=ux, n=r-5Y.

2. B2—4AC=0. In this case from the equation we can only obtain
B
E=y— 94 €.
It turns out that n can be chosen arbitrarily as long as the Jacobian

J_det< Sa &y >7é0

. . Nz My
The canonical form is

Uy =0
whose general solutions are

u= (&) +n(§)-
When B =0, one can simply choose =y and therefore

B B
u—¢(y—ﬂx>+yw(y—ﬂx).
3. B2—4AC <0. We obtain
E=y—(a+idb)x, n=y—(a—1ib)x,
with
_B _ 1y =Y
As a consequence
a=y-—ax, f=—bux.
Note that basically the only second order equation we can solve is
’U,En:O.

In this case, we have

u=¢(&)+v(n)=d((y —ax)—ibzx)+¢((y—ax)+ibzx).

Example 6. (§4.6, 2(iii)) Obtain the general solution of the following equation:

dtyr+12Upy + 9 Uyy —9u=09.

2. Such an equation is called the Fuler equation.



(Note that there is a typo in the book)

Solution. First we reduce it to canonical form. As B2 —4 A C =0, the equation is parabolic. The charac-

teristics equation is
4(dy)® +12 (dz) (dy) + 9 (dz)*=0 — 2dy —3dz=0.
Thus we have
E=2y—3x.

We can simply take n=1y.
Thus

§x=—3, 574227 fmmzfzyzfyy:& Ny =1, Ne="Nez=Nay="Nyy=0.
Under this change of variables, we have
Up o = gg €3+ 2 Ugn Ex Mo + Uy 13+ Ug Eua + UnTow = I Ugg;
Ugy =Uge &x §y + Ugy (Ea My + Ey M) + Unn N Ny + g Eay T UnNay = — 6 Uge — 3ugy;

uyy:UEE@/"‘2“5775@177@1+Unn7712/+u55yy+un77yy:4UEE+4U£H+UM§
Thus the equation reduces to
Yupp—9u=9 <= uy,—u=1
We see that the general solution is

uw(&,n)=f()e"+g(§)e " —1.

Or in (z,y) variables
u(z,y)=fRy—3z)eY+92y—3z)e ¥—1.

Example. (§4.6, 2(iv)) Obtain the general solution of the following equation:
Upg +Uzy — 2Uyy —3Uy —6uy =9 (22 — y).
Solution. We compute
B?—4AC=1-4(-2)=9>0
thus the equation is hyperbolic. The characteristics equation is
(dy)2 —(dz) (dy) — 2 (dgr:)2 =0 <= (dy —2dz) (dy+dz)=0
which gives
§=y—2x, n=y+z.
We have
a=—2, §&=1; Ne =1y =1
and all second order derivatives are 0. As a consequence
Upx = Uggfg + 2u£n§m77$ +unn77% +u£§mm+unnmm:4u££ - 4u£n+u77777
Upy = Uge&a &yt Uen (Eatly + SyMa) + Unn e Ny + Ue oy + UnNay = — 2Uge — Ugy + Uny,
Uyy = “5555"' 2“€n§y77y+“7m77§+uﬁfyy"’unnyy:“&&"' 2Ugn + Upy,
Uy = Uelp+UyNe=—2Ug + Uy,
Uy = Ug&y+Upny =g+ Uy,
20—y = —¢&.
The equation reduces to

—ugn—up=—-9¢ <= (ug+u), =uegy—uy=5¢.

(94)

(95)

(96)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(114)



The general solution can be obtained via

uetu=En+h(§) = (efu),=e*¢nteth(§) = efu=net(—1)+f(§)+9(n).

Therefore

w(&,m)=n(E=1)+ f(&)+g(n)e ¢

and
w(z,y)=(y+x) (y—22 1)+ fly—2x)+ gy +z)e2* ¥

where f, g are arbitrary functions.

3. Finding general solutions for non-constant coefficient equations.

3.1. Examples.
Example 7. (§4.6, 2(i)) Obtain the general solution.

T2 Upy + 22 YUy + Y2 Uyy + T YUz + y2uy, = 0.

(115)

(116)

(117)

(118)

Solution. We check B2 —4AC=(2x y)2 — 4 22 4?2 =0 so the equation is parabolic. The characteristics

equation is
22 (dy)? — 2z y (dz) (dy) + v (dz)*=0 = zdy — ydz=0.
Thus
=Y
=

Yy 1
J—det( Lo &y )_det -7 3
Nz My Nz Ny

and we can take n=x to guarantee J=+£0. Now we have

We compute

y 1 2y 1
e==0p &= Ge="m Ly="17 &n=0

Ne=1, Ny =Nz =Ny =Nyy=0.
This gives

2 2 2
Upye = uiﬁgg+2u£n§m77m+unnn£+u£§mw+unnmm:%u££_x_guﬁn"'unn'*'x_gu&a

1
Uzy = Uge&a§y+Uen (& My + EyNa) + Unn N My + U Exy + Uy Ny = _%uﬁﬁ‘FEUM -

1
2 2
Uyy = uEfgy"‘2”5775@177@1"‘Unnny"'uégyy"'unnyy:ﬁuEEv

Uy = U5§z+unnm=—%ug+um

Uy = “£§y+un77y:é“£'
The equation becomes

22Uy +Tyuy=0 = uy,+ Eu,=0.
We solve the equation
Unn+EUn=0 = uy+Eu=h(§) = (e*"u) =eh(§)
which leads to
eSMu=¢E"1eh(€) + g(§) = u(&n) =& h(§)+e g(8).
)= 5(2) o L) e

x €T

So finally

with f, g arbitrary functions.

e

(119)

(120)

(121)

(130)

(131)

(132)



Example 8. (§4.6, 2(ii)) Obtain the general solution.

U — CP T Upp — 22 Up =0 (133)

where c is a constant.
Solution. We check B? —4 AC =0+ 4c?7r2> 0 so that equation is hyperbolic. The characteristics equa-
tion is

r(dr)> = 2r(dt)>’=0 = dr+cdt=0 (134)
so we take
E=r+ct, n=r—-ct. (135)
From this we obtain
&G=1 &=  np=1 m=-c (136)

and all second order derivatives are zero.
Now we compute

Upp=Uge EF +2Uen &M+ Uy NF +ue&p+unNue = uge — 2 ugy+ Ay, (137)
Uy = Uﬁgf? +2 u&ngr Nr + Uy 777% + ug §rrt+ UpNryr = Uge+ 2 Ugn + Uny (138)
Ur=Ue&r+UnNy = Us+ U, (139)
The equation then reduces to
—4rcugy—2ug—2cuy=0 = 2rug,+uc+u,=0 = (£+n)ug,+ue+u,=0. (140)
It turns out that the equation can be rewritten to
[(§+m)u],=0. (141)
Therefore the general solutions are
—1
w(&m)=(E+n) " [f(E)+9g(n)] (142)
or equivalently
w(r,t)y=r=t[f(r+ct)+g(r —ct)]. (143)

Remark 9. In fact, if we let v =r u from the very start, we can reduce the equation immediately to the
wave equation.

3.2. Further simplifications.
For the hyperbolic case with constant coefficients

Ups = a1 Uy + A2 Us +azu+ f1 (144)
we can introduce
v=ue (MTT28) — g — g glarrFazs), (145)
which yields
vps=(a1a2+a3) v+ g1 (146)
where g1 = f1 e (927115) when we choose b=ay,a=as.
Similarly, by choose appropriate a, b and let v = u e~ ("% one can cancel the first order terms and
reduce
Upp — Ugs = A Up + A3 Us + a5 u+ fT = Vpp —vss=hiv+ g7, (147)
Uss = b1 Up +bous+b3u+ fo = vss=hov+ go, (148)
Upp + Uss = C1 Uy + CoUs + C3U+ f3 = Vppr+ V55 =h3v + g3. (149)

Remark 10. Note that when the coefficients are not constants, the above trick does not quite work.



