
Week 02 : Method of Characteristics

From now on we will study one by one classical techniques of obtaining solution formulas for PDEs. The
first one is the method of characteristics, which is particularly useful when solving first order equations.

1 . Classification of first-order equations.
The general form of first-order PDE ( in R2 ) :

F(x , y , u , ux , uy) = 0 , (x , y) ∈ D ⊂ R2 . ( 1 )

or in R3 :

F(x , y , z , u , ux , uy , uz ) = 0 . ( 2 )

Often the following notation is used in 2D:

p= ux , q = uy ( 3)

thus the equation can be written as

F(x , y , u , p, q) = 0 . ( 4)

The linear equations can be classificed into the following cases, from easier to more difficult:

1 . Linear:

F(x , y , u , ux , uy) = a(x , y) ux + b(x , y) uy + c( x , y) u − d(x , y) . ( 5)

2 . Semi-linear:

F(x , y , u , ux , uy) = a(x , y) ux + b(x , y) uy − c( x , y , u) . ( 6)

3. Quasi-linear:

F( x , y , u , ux , uy) = a( x , y , u) ux + b(x , y , u) uy − c(x , y , u) . ( 7)

4. General case.

2. Method of characteristics.
We try to find a method to solve the general first-order quasi-linear equation

a(x , y , u) ux + b(x , y , u) uy = c(x , y , u) . ( 8)

Let’ s start by thinking geometrically. Consider the 3 dimensional space with coordinates (x , y , u) .
Assume that u = u( x , y) is a solution to the equation, it is clear that it represents a surface in the ( x , y , u)
space.

Now we explore the geometrical meaning of the equation. Observe that the equation can be written in
the form of an inner product
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Therefore all we need to do is to understand the relation between the vector



ux
uy
− 1


 and the solution.

First introduce a new function Ψ: R3 � R through

Φ(x , y , u) = u − u( x , y) . ( 1 0)

Note that in the RHS of the above, the first u is a variable, the second u is a function. For example, sup-
pose u( x , y) = x2 + y2 , then the corresponding Φ( x , y , u) = u −

(
x2 + y2

)
.

Now we easily see that 
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 = −
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 = − ∇Φ . ( 1 1 )



Recall that geometrically, ∇Φ ( and also − ∇Φ ) is a normal vector of the surface Φ = 0 . As a consequence


ux
uy
− 1


 is perpendicular to the solution surface u = u(x , y) .

On the other hand, from the equation we know that


a
b
c


 is perpendicular to the vector




ux
uy
− 1


 which

means


a
b
c


 must be tangent to the surface u = u(x , y) .

Now we summarize. We have shown that the equation is equivalent to the geometrical requirement

that the vector


a ( x , y , u)
b ( x , y , u )
c ( x , y , u)


 is tangent to the solution surface u = u( x , y) . As a consequence, any integral

curve of


a
b
c


 , that is any



X ( s )
Y ( s )
U ( s )


 satisfying

dX

ds
= a(X, Y, U ) ( 1 2 )

dY

ds
= b(X, Y, U ) ( 1 3)

dU

ds
= c(X, Y, U ) ( 1 4)

must be contained in one of the solution surfaces. Conversely, any surface “woven” by such integral curves
is a solution surface.

The above understanding leads to the following “method of characteristics” due to Lagrange.

Theorem 1 . The general so lution of a first- order, quasi- linear PDE

a(x , y , u) ux + b(x , y , u) uy = c(x , y , u) ( 1 5)

satisfies

F( φ , ψ ) = 0 , ( 1 6)

where F is an arb itrary function of φ (x , y , u) and ψ ( x , y , u) , and any intersection of the level sets of φ
and ψ is a so lution of the characteristic equations

dx

a
=

dy

b
=

du

c
. ( 1 7)

Remark 2. As we will see soon, φ , ψ are obtained through solving the characteristic equations. And each
F gives a solution to the original equation.

Remark 3. The curves mentioned above are called the families of characteristic curves of the equation.

Remark 4. As we will see, the main technique in getting φ and ψ is

a

b
=
c

d
� a ± c

b ± d =
a

b
=
c

d
. ( 1 8)

In the following, we will show how to apply this method. We start with the simplest case.

3. Solving linear first-order equations.

3. 1 . Equations with constant coefficients.
We start from the simplest case, where a , b , c and d are just constants.

Example 5. ( § 2. 8, 3( b) ) Find the general solution of the equation

a ux + b uy = 0; a , b are constant . ( 1 9)

Solution. The characteristic equations are

dx

a
=

dy

b
=

du

0
. ( 20)



What we need are two functions φ( x , y , u) and ψ ( x , y , u) such that dφ = 0 , dψ = 0 along the characteris-
tics.

Obviously we can take φ = u . For ψ , notice that

d( a y − b x) = a dy − b dx = 0 , ( 21 )

thus we can take

ψ = a y − b x. ( 22 )

As a consequence, the solution satisfies

F( a y − b x , u) = 0 ( 23)

for any function F . This means

u = f ( a y − b x ) . ( 24)

for an arbitrary function f .

Example 6. (Cauchy problem, § 2 . 8, 5( a) ) Oftentimes, the value of the solution along some specific
curve in the plane is prescribed. For example, solve

3 ux + 2 uy = 0 , u(x , 0) = sin x. ( 25)

Solution. From the above example we know that the general solution takes the form

u = f ( 2 x − 3 y) . ( 26)

Now substituting this into the initial condition, we obtain

f ( 2 x ) = sin x �
f ( x ) = sin

x

2
. ( 27)

Therefore

u( x , y) = sin
2 x − 3 y

2
.

Example 7. ( c , d
�

0) What happens when the c , d are not 0? The method still works. We write down
the characteristic equations

dx

a
=

dy

b
=

du

d − c u . ( 28)

We have
dx

a
=

dy

b
�

d( b x − a y) = 0 , ( 29)

dx

a
=

du

d − c u
� du

dx
= a− 1 d − a− 1 c u

�
u = Ce− a

− 1 c x + c− 1 d
�

d
(
ea
− 1 cx

(
u − c− 1 d

) )
= 0 ( 30)

As a consequence

φ = b x − a y , ψ = ea
− 1 cx

(
u − c− 1 d

)
( 31 )

and

F( φ , ψ ) = 0 ( 32 )

gives

u = c− 1 d + e− a
− 1 cx f ( b x − a y) . ( 33)

Remark 8. In the above, one may be tempted to conclude

d
(
u − C e− a− 1 c x

)
= 0 ( 34)

and try to use u − C e− a
− 1 cx as ψ . This is obviously wrong as d somehow disappeared. One should keep

in mind that neither φ or ψ can involve arbitrary constants. It is their values that are arbitrary constants.

Example 9. Some times people use the following “method of characteristics”:



First solve
dx

ds
= a ,

dy

ds
= b ( 35)

then solve

us + c u = d ( 36)

to obtain the solution u in the form u = u( s , t) . Finally represent s , t by x , y and obtain the solution. This
is equivalent to our method but considerably more complicated to use. Anyone who does not believe this
should try using this method to the following examples with non-constant coefficients.

Remark 1 0. One may wonder, how to find out φ and ψ efficiently? Unfortunately there may not be any
short-cut. One way to systematically find φ and ψ is the following. The characteristic equations consists
of three equations. Pick any two of them. If you can find general solutions, then you have φ and ψ . But
this fails when any coefficient involves all other variables.

3. 2 . Equations with non-constant coefficients.

Example 1 1 . ( § 2 . 8, 3( h) ) Find the general solution of

y uy − x ux = 1 . ( 37)

Solution. The characteristic equations are

dx

− x =
dy

y
=

du

1
. ( 38)

Using
dx

− x =
dy

y
( 39)

we obtain

y dx + x dy = 0
�

d( x y) = 0 . ( 40)

Thus

φ = x y ; ( 41 )

On the other hand, from
dy

y
=

du

1
( 42 )

we obtain

du = d log y �
d( u − log y) = 0 . ( 43)

As a consequence we can take

ψ = u − log y. ( 44)

Putting these together we obtain

F (x y , u − log y) = 0 ( 45)

which gives

u = log y + f (x y) . ( 46)

Example 1 2 . ( § 2 . 8, 5( c) ) Find the solution of the following Cauchy problem:

x ux + y uy = 2 x y , with u = 2 on y = x2 . ( 47)

Solution. We need to first find the general solution, then using the value on y = x2 to determine the arbi-
trary function involved.

− Find the general solution
The characteristic equations are

dx

x
=

dy

y
=

du

2 x y
. ( 48)

Using
dx

x
=

dy

y
( 49)



we obtain

d
( y
x

)
= 0

� can take φ =
y

x
. ( 50)

On the other hand, we have

du = 2 x dy = 2 y dx = x dy + y dx = d(x y)
�

d( u − x y) = 0 ( 51 )

therefore

ψ = u − x y. ( 52 )

The general solution satisfies

F
( y
x
, u − x y

)
= 0

�
u = x y + f

( y
x

)
. ( 53)

− Determine the solution.
We have u = 2 along y = x2 , that is

u
(
x , x2

)
= 2 . ( 54)

Using the formula for the general solution, we have

x3 + f (x ) = 2
�

f (x ) = 2 − x3 . ( 55)

As a consequence

u( x , y) = x y + 2 −
( y
x

) 3
. ( 56)

4. Solving semi-linear first-order equations.

Example 1 3. ( § 2 . 8, 3( g) ) Find the general solution of the following equation:

y2 ux − x y uy = x ( u − 2 y) . ( 57)

Solution. The characteristic equations are

dx

y2
=

dy

− x y =
du

x ( u − 2 y)
. ( 58)

From
dx

y2
=

dy

− x y ( 59)

we have

d
(
x2 + y2

)
= 0

�
φ = x2 + y2 . ( 60)

On the other hand, we have

dy

− x y =
du

x (u − 2 y)
� du

dy
= − u

y
+ 2

� d( u − y)

dy
= − u − y

y
�

d( (u − y) y) = 0 . ( 61 )

Thus we take

ψ = y ( u − y) . ( 62 )

Now

F
(
x2 + y2 , y ( u − y)

)
= 0 ( 63)

gives

u = y + y− 1 f
(
x2 + y2

)
. ( 64)

Example 1 4. ( § 2 . 8, 5( g) ) Solve

x ux + y uy = u + 1 with u(x , y) = x2 on y = x2 . ( 65)

Solution. The characteritic equations are

dx

x
=

dy

y
=

du

u + 1
( 66)



which easily lead to

φ =
y

x
, ψ =

u + 1

x
. ( 67)

Thus

u = x f
( y
x

)
− 1 . ( 68)

Now the Cauchy data implies

x f ( x) − 1 = u
(
x , x2

)
= x2 ( 69)

thus

f ( x) = x + x− 1 . ( 70)

As a consequence

u(x , y) = x
( y
x

)
+ x

( y
x

) − 1
− 1 = y +

x2

y
− 1 . ( 71 )

5. Solving quasi-linear first-order equations.

Example 1 5. ( § 2 . 8, 3( f) ) Find the general solution of

( y + u) ux + y uy = x − y. ( 72 )

Solution. The characteristic equations are

dx

y + u
=

dy

y
=

du

x − y . ( 73)

From this we have
dx

y + u
=

d( y + u)

x
�

d
(
x2 − ( y + u)

2
)

= 0 . ( 74)

Thus we can take

φ = x2 + ( y + u)
2 . ( 75)

On the other hand, we have

d(x − y)

u
=

du

x − y
�

d
(
u2 − (x − y)

2
)

= 0 . ( 76)

As a consequence, the solution is given by

F
(
x2 − ( y + u)

2 , u2 − ( x − y)
2
)

= 0 . ( 77)

Remark 1 6. Note that, in the above we can also use

dy

y
=

d(x + u)

x + u
�

d

(
x + u

y

)
= const . ( 78)

Thus the formula may not be unique.

Example 1 7. ( § 2 . 8, 5( h) ) solve

u ux − u uy = u2 + (x + y)
2 with u = 1 on y = 0 . ( 79)

Solution. The characteristic equation are

dx

u
=

dy

− u =
du

u2 + (x + y) 2
. ( 80)

We have
dx

u
=

dy

− u
�

d( x + y) = 0
�

φ = x + y. ( 81 )

Then we have
dy

− u =
du

u2 + φ2

�
ψ = e2 y

(
u2 + φ2

)
. ( 82 )



Now from the Cauchy data we have

F
(
φ , 1 + φ2

)
≡ 0 . ( 83)

Therefore effectively F has to be

F( φ , ψ ) = ψ −
(
φ2 + 1

)
( 84)

and the solution satisfies

e2 y
(
u2 + (x + y)

2
)
−
(

1 + (x + y)
2
)

= 0 ( 85)

which leads to

u = ±
[ {

1 + ( x + y)
2
}
e− 2 y − ( x + y)

2
] 1 / 2

. ( 86)

6. Equations with more than two variables.
The method of characteristics can be applied to higher dimensional problems with no difficulty in prin-

ciple – it indeed becomes more difficult in practice!

Example 1 8. ( § 2 . 8, 8( d) ) Solve the following equation

y z ux − x z uy + x y
(
x2 + y2

)
uz = 0 . ( 87)

Solution. The characteristic equations are

dx

y z
=

dy

− x z =
dz

x y (x2 + y2 )
=

du

0
. ( 88)

This time we need three invariants, let’ s denote them by φ , ψ and η .
C learly one can take

φ = u. ( 89)

For the second invariant, we observe

dx

y z
=

dy

− x z
� dx

y
=

dy

− x
�

d
(
x2 + y2

)
= 0

�
ψ = x2 + y2 . ( 90)

The last invariant can be obtained through

dy

− x z =
dz

x y φ
� dy

− z =
dz

y φ
�

d
(
z2 + y2 φ

)
= 0

�
η = z2 + y2 φ. ( 91 )

Therefore the solutions are obtained by setting

F
(
u , x2 + y2 , z2 + y2

(
x2 + y2

) )
= 0 ( 92 )

which gives

u = f
(
x2 + y2 , z2 + y2

(
x2 + y2

) )
( 93)

for arbitrary f . 1

1 . Keep in mind that this f will be determined once some Cauchy data is given.


