Math 334 Fall 2011: Summary of Quiz 5

OcMountain Daylight Time. 3, 2011

Solution and Grading Scheme.

- Problem: Solve

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=3 e^{t} \tag{1}
\end{equation*}
$$

- Solution: We use undetermined coefficients.

First solve the homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=0 \tag{2}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
r^{2}-2 r+1=0 \Longrightarrow r_{1}=r_{2}=1 \tag{3}
\end{equation*}
$$

So $y_{1}=e^{t}, y_{2}=t e^{t}$.
Next guess the form of y_{p}. As

$$
\begin{equation*}
g=3 e^{t}=e^{\alpha t}\left(a_{0}+\cdots+a_{n} t^{n}\right) \tag{4}
\end{equation*}
$$

with $\alpha=1, n=0$, we guess

$$
\begin{equation*}
y_{p}=t^{s} e^{t} A_{0} \tag{5}
\end{equation*}
$$

Now as $\alpha=1$ is a repeated root of the characteristic equation, $s=2$. So

$$
\begin{equation*}
y_{p}=t^{2} e^{t} A_{0} \tag{6}
\end{equation*}
$$

Substitute into the equation we get

$$
\begin{equation*}
A_{0}=\frac{3}{2} \tag{7}
\end{equation*}
$$

So the solution is given by

$$
\begin{equation*}
y=C_{1} e^{t}+C_{2} t e^{t}+\frac{3}{2} t^{2} e^{t} \tag{8}
\end{equation*}
$$

- It is also OK to solve using variation of parameters. As $y_{1}=e^{t}, y_{2}=t e^{t}$, we compute

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right]=\left(e^{t}\right)\left(t e^{t}\right)^{\prime}-\left(e^{t}\right)^{\prime}\left(t e^{t}\right)=e^{2 t} \tag{9}
\end{equation*}
$$

Note that the equation is already in standard form so $g=3 e^{t}$. Now

$$
\begin{gather*}
u_{1}=\int \frac{-g y_{2}}{W}=\int \frac{-3 e^{t} t e^{t}}{e^{2 t}}=\int-3 t=-\frac{3}{2} t^{2} \tag{10}\\
u_{2}=\int \frac{g y_{1}}{W}=\int \frac{3 e^{t} e^{t}}{e^{2 t}}=\int 3=3 t \tag{11}
\end{gather*}
$$

So

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{3}{2} t^{2} e^{t} \tag{12}
\end{equation*}
$$

and solution is given by

$$
\begin{equation*}
y=C_{1} e^{t}+C_{2} t e^{t}+\frac{3}{2} t^{2} e^{t} \tag{13}
\end{equation*}
$$

- Grading Scheme:
- Know the overall procedure: formulas to use, etc. 2 pts ;
- Solving the homogeneous equation: 1 pt.
- Getting y_{p} correctly 1 pt .
- Final answer: 1 pt.

Statistics.

$$
\begin{array}{lllllll}
5 & 4 & 3 & 2 & 1 & 0 & \text { Total } \\
12 & 5 & 1 & 3 & 0 & 0 & 21
\end{array}
$$

Table 1. Grade distribution

Popular Mistakes.

- Wrong characteristic equation.
$y^{\prime}=r e^{r t}, y^{\prime \prime}=e^{r t}+r^{2} e^{r t}$. The differentiation is with respect to t, not r. So r is just a "constant here". So $\left(r e^{r t}\right)^{\prime}=r\left(e^{r t}\right)^{\prime}=r^{2} e^{r t}$.
- Wrong s in $t^{s} e^{\alpha t}\left(A_{0}\right)$.
- Wrong roots:

$$
\begin{equation*}
r^{2}-2 r+1=0, \quad r_{1}=r_{2}=-1 \tag{14}
\end{equation*}
$$

- Not careful enough:

$$
\begin{equation*}
\ldots-\frac{3}{2} t^{2} e^{t}+3 t^{2} e^{t} \tag{15}
\end{equation*}
$$

cancel.

$$
\begin{equation*}
\int 3=t \tag{16}
\end{equation*}
$$

- Forgot y_{1}, y_{2}.

$$
\begin{equation*}
u_{1}=\frac{3}{2} t^{2}, u_{2}=3 t^{2}, \ldots y=\ldots+\frac{3}{2} t^{2}+3 t^{2} \tag{17}
\end{equation*}
$$

Some Suggestions.

