Math 334 Fall 2011: Summary of Quiz 3

September 23, 2011

Solution and Grading Scheme.

- Problem: Solve

$$
\begin{equation*}
y^{\prime}=2 x y+x^{3} \tag{1}
\end{equation*}
$$

- Tests:
- Familiarity with linear equations;
- Ability to integrate by parts.
- Solution: First notice that this is linear equation. We write it into standard form:

$$
\begin{equation*}
y^{\prime}-2 x y=x^{3} \tag{2}
\end{equation*}
$$

So $p(x)=-2 x$. The integrating factor is computed as

$$
\begin{equation*}
\mu(x)=e^{-\int 2 x}=e^{-x^{2}} \tag{3}
\end{equation*}
$$

Multiply both sides by this integrating factor we get

$$
\begin{equation*}
\left(e^{-x^{2}} y\right)^{\prime}=e^{-x^{2}}\left[y^{\prime}-2 x y\right]=e^{-x^{2}} x^{3} \tag{4}
\end{equation*}
$$

We need to integrate $e^{-x^{2}} x^{3}$.

$$
\begin{align*}
\int x^{3} e^{-x^{2}} \mathrm{~d} x= & \frac{1}{2} \int x^{2} e^{-x^{2}} \mathrm{~d} x^{2} \\
& \left(\operatorname{Set} u=x^{2}\right) \\
= & \frac{1}{2} \int u e^{-u} \mathrm{~d} u \\
= & -\frac{1}{2} \int u \mathrm{~d} e^{-u} \\
= & -\frac{1}{2}\left[u e^{-u}-\int e^{-u} \mathrm{~d} u\right] \\
= & -\frac{1}{2}\left[u e^{-u}+e^{-u}\right] \\
& (\text { Back to } x) \\
= & -\frac{1}{2}\left[x^{2} e^{-x^{2}}+e^{-x^{2}}\right] \tag{5}
\end{align*}
$$

Therefore

$$
\begin{equation*}
e^{-x^{2}} y=-\frac{1}{2}\left[x^{2} e^{-x^{2}}+e^{-x^{2}}\right]+C \Longrightarrow y=-\frac{x^{2}+1}{2}+C e^{x^{2}} \tag{6}
\end{equation*}
$$

Remark 1. It's also OK not doing $u=x^{2}$. Just do

$$
\begin{equation*}
\int x^{3} e^{-x^{2}} \mathrm{~d} x=-\frac{1}{2} \int x^{2} \mathrm{~d} e^{-x^{2}}=-\frac{1}{2}\left[x^{2} e^{-x^{2}}-\int e^{-x^{2}} \mathrm{~d} x^{2}\right]=-\frac{1}{2}\left[x^{2} e^{-x^{2}}+e^{-x^{2}}\right] \tag{7}
\end{equation*}
$$

- Grading Scheme:
- Know how to solve: 2 pts;
- Correct integrating factor: 1 pt .
- Correct integration of the right hand side: 1 pt ;
- Correct final answer: 1 pt.

Statistics.

$$
\begin{array}{lllllll}
5 & 4 & 3 & 2 & 1 & 0 & \text { Total } \\
2 & 0 & 5 & 1 & 0 & 1 & 9
\end{array}
$$

Table 1. Grade distribution

Popular Mistakes.

- Wrong $p(x)$.

$$
\begin{equation*}
p(x)=2 x . \tag{8}
\end{equation*}
$$

- Forget to multiply the right hand side by $\mu(x)$:

$$
\begin{equation*}
\mu(x)=e^{-x^{2}}, \text { so }\left(e^{-x^{2}} y\right)^{\prime}=x^{3} \tag{9}
\end{equation*}
$$

- Wrong cancellation.

$$
\begin{equation*}
\left(e^{x^{2}} y\right)^{\prime}=x^{3} e^{-x^{2}} \Longrightarrow y^{\prime}=x^{3} e^{-x^{2}} e^{-x^{2}} \tag{10}
\end{equation*}
$$

- Unable to integrate

$$
\begin{equation*}
\int x^{3} e^{-x^{2}} \mathrm{~d} x \tag{11}
\end{equation*}
$$

Some Suggestions.

- It would be great if you can hand in your quiz even if you cannot solve the problem. Only then can I get correct estimates of the strength and weakness of the class.

