Math 334 Fall 2011: Summary of Quiz 2

September 16, 2011

Solution and Grading Scheme.

- Problem: Solve

$$
\begin{equation*}
x\left(x^{2}+y^{2}\right) \mathrm{d} x+y\left(x^{2}+y^{2}\right) \mathrm{d} y=0 \tag{1}
\end{equation*}
$$

- Solution: We have

$$
\begin{equation*}
M(x, y)=x\left(x^{2}+y^{2}\right), \quad N(x, y)=y\left(x^{2}+y^{2}\right) \tag{2}
\end{equation*}
$$

Check

$$
\begin{equation*}
\frac{\partial M}{\partial y}=2 x y, \quad \frac{\partial N}{\partial x}=2 x y \tag{3}
\end{equation*}
$$

So the equation is exact.
Compare

$$
\begin{equation*}
\int x\left(x^{2}+y^{2}\right) \mathrm{d} x \text { and } \int y\left(x^{2}+y^{2}\right) \mathrm{d} y \tag{4}
\end{equation*}
$$

we see that they are of exactly the same difficulty.
Write

Compute

$$
\begin{equation*}
u(x, y)=\int x\left(x^{2}+y^{2}\right) \mathrm{d} x+g(y)=\frac{1}{4} x^{4}+\frac{1}{2} x^{2} y^{2}+g(y) \tag{5}
\end{equation*}
$$

and compare with

$$
\begin{equation*}
\frac{\partial u}{\partial y}=2 x^{2} y+g^{\prime}(y) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
N(x, y)=y\left(x^{2}+y^{2}\right) \tag{7}
\end{equation*}
$$

we see that $g^{\prime}(y)=y^{3}$ which gives $g(y)=y^{4} / 4$.
So finally the general solution is given by
or equivalently

$$
\begin{equation*}
\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\frac{y^{4}}{4}=C \tag{8}
\end{equation*}
$$

or even simpler

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{2}=C \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
x^{2}+y^{2}=C \tag{10}
\end{equation*}
$$

- Grading Scheme:
- Know how to solve: 2 pts;
- Correct integration: 1 pt .
- Correct $g(y)$ (or $g(x)): 1 \mathrm{pt}$;
- Correct final answer: 1 pt .

Statistics.

$\begin{array}{lllllll}5 & 4 & 3 & 2 & 1 & 0 & \text { Total } \\ 10 & 2 & 3 & 0 & 3 & 1 & 19\end{array}$
Table 1. Grade distribution

Popular Mistakes.

- Forgot to write down solution after getting $u(x, y)$.
- $x^{2} y+g^{\prime}(y)=y\left(x^{2}+y^{2}\right) \Longrightarrow g^{\prime}(y)=y^{2}$.
- $y\left(x^{2}+y^{2}\right) \mathrm{d} y=-x\left(x^{2}+y^{2}\right) \mathrm{d} x \Longrightarrow \int y\left(x^{2}+y^{2}\right) \mathrm{d} y=-\int x\left(x^{2}+y^{2}\right) \mathrm{d} x$. Such operation is only correct when doing a separable equation.

Some Suggestions.

- Some of you didn't check whether the equation is "exact" and just start solving it. When the equation is not exact, time can be wasted by doing this.

