Math 334 Fall 2011: Summary of Quiz 1

September 12, 2011

Solution and Grading Scheme.

- Problem: Solve $\dot{y}=t e^{t}$.
- Solution: All we need to do is to find the primitive of $t e^{t}$. Calculate:

$$
\begin{align*}
\int t e^{t} \mathrm{~d} t & =\int u \mathrm{~d} v \quad\left(u=t, v=e^{t}\right) \\
& =u v-\int v \mathrm{~d} u \\
& =t e^{t}-\int e^{t} \mathrm{~d} t \quad \text { (Integration by parts) } \\
& =t e^{t}-e^{t} \\
& =e^{t}(t-1) \tag{1}
\end{align*}
$$

For those who are familiar with the integration by parts process, the step $u=t, v=e^{t}$ can be omitted. Just write

$$
\begin{equation*}
\int t e^{t} \mathrm{~d} t=\int t \mathrm{~d} e^{t}=t e^{t}-\int e^{t} \mathrm{~d} t=t e^{t}-e^{t}=(t-1) e^{t} \tag{2}
\end{equation*}
$$

Now write down the solution (don't forget!)

$$
\begin{equation*}
y=(t-1) e^{t}+C \tag{3}
\end{equation*}
$$

- Grading Scheme:
- Know how to solve: 2pts;
- Know how to do integration by parts: 1 pt ;
- Evaluate the integral correctly: 1 pt ;
- Correct final answer: 1 pt.

Statistics.

$$
\begin{array}{lllllll}
5 & 4 & 3 & 2 & 1 & 0 & \text { Total } \\
9 & 8 & 2 & 2 & 0 & 2 & 23
\end{array}
$$

Table 1. Grade distribution

Popular Mistakes.

- Forget to include an arbitrary constant C.
- Remember incorrectly the integration by parts formula.

Integration by parts is the "reverse" of the Leibniz formula for differentiating product of two functions.

$$
\begin{equation*}
(f g)^{\prime}=f^{\prime} g+g^{\prime} f \Longrightarrow f g=\int f^{\prime} g+\int g^{\prime} f \Longrightarrow \int f^{\prime} g=f g-\int g^{\prime} f \tag{4}
\end{equation*}
$$

Or use the d operation:

$$
\begin{equation*}
\mathrm{d}(f g)=g \mathrm{~d} f+f \mathrm{~d} g \Longrightarrow f g=\int g \mathrm{~d} f+\int f \mathrm{~d} g \Longrightarrow \int g \mathrm{~d} f=f g-\int f \mathrm{~d} g \tag{5}
\end{equation*}
$$

- Remember incorrectly basic integration facts such as $\int e^{t} \mathrm{~d} t=e^{t}+C$.

Some Suggestions.

- Write more intermediate steps. For example, the following answer

$$
\dot{y}=t e^{t} \text { therefore } y=(t+1) e^{t}
$$

would get 0 point, while this one

$$
\dot{y}=t e^{t} \Longrightarrow y=\int t e^{t} \mathrm{~d} t=(t+1) e^{t}
$$

would get 2 (because knowledge of how to solve the equation is shown), and finally

$$
\dot{y}=t e^{t} \Longrightarrow y=\int t e^{t} \mathrm{~d} t=t e^{t}-\int e^{t} \mathrm{~d} t=(t+1) e^{t}
$$

would get 3 (because furthermore the correct procedure of integration by parts is shown).

- It is a good idea to plug your solution back into the equation and check whether it's correct.

