Math 3342011 Midterm 2 Solutions

NAME

ID \#

Signature \qquad

- Only pen/pencil/eraser are allowed. Scratch papers will be provided.
- Please write clearly, with intermediate steps to show sufficient work even if you can solve the problem in "one go". Otherwise you may not receive full credit.
- Please box, underline, or highlight the most important parts of your answers.

Problem	Points	Score
1	30	
2	20	
3	15	
4	15	
5	15	
6	100	

Problem 1. (30 pts) Find the first five nonzero terms in the solution of the problem

$$
\begin{equation*}
y^{\prime \prime}-x y^{\prime}-y=0, \quad y(0)=2, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

Solution. Write

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{2}
\end{equation*}
$$

Substitute into the equation:

$$
\begin{align*}
0 & =\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime \prime}-x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime}-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{3}\\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n} \tag{4}\\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n} \tag{5}\\
& =2 a_{2}-a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n+1) a_{n}\right] x^{n} \tag{6}
\end{align*}
$$

Thus the recurrence relations are

$$
\begin{align*}
2 a_{2}-a_{0} & =0 \tag{7}\\
(n+2) a_{n+2}-a_{n} & =0 \tag{8}
\end{align*}
$$

Now the initial conditions give

$$
\begin{equation*}
y(0)=2 \Longrightarrow a_{0}=2 ; \quad y^{\prime}(0)=1 \Longrightarrow a_{1}=1 \tag{9}
\end{equation*}
$$

We compute

$$
\begin{array}{ll}
(n=0) & a_{2}=\frac{a_{0}}{2}=1 \\
(n=1) & a_{3}=\frac{a_{1}}{3}=\frac{1}{3} \\
(n=2) & a_{4}=\frac{a_{2}}{4}=\frac{1}{4} \tag{12}
\end{array}
$$

We already have five nonzero terms:

$$
\begin{equation*}
y(x)=2+x+x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\cdots \tag{13}
\end{equation*}
$$

Grading Scheme:

- Procedure (10 pts): $y=\sum a_{n} x^{n}$ (2); Substitute into equation (1); Recurrence relation (2); How to find a_{0} and a_{1} (2); Get a_{n} one by one (2); Know what final answer should look like (2).
- Details (20 pts): $y^{\prime \prime}$ (2); y^{\prime} (2); Equation (2); $2 a_{2}-a_{0}=0$ (2); $\left.n+2\right) a_{n+2}-a_{n}=0$ (2); $a_{0}=2$ (2); $a_{1}=1$ (2); $a_{2}-a_{4}(1+1+1) ; y=\cdots$ (3).
- Common mistakes:
- Don't know how to obtain a_{0}, a_{1}.
- Write $y=2+x+x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}$ without the "...". (Didn't deduct any point this time. But will take point(s) off in the final).
- $y=a_{0}+a_{1} x+\frac{a_{2}}{2!} x^{2}+\cdots$ after finding a_{n}.

Problem 2 (20 pts) Find the general solution of

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}+y=0 \tag{14}
\end{equation*}
$$

Solution.

Set $y=x^{r}$ we reach the indicial equation

$$
\begin{equation*}
r(r-1)+2 r+1=0 \Longrightarrow r^{2}+r+1=0 \Longrightarrow r_{1,2}=\frac{-1 \pm \sqrt{-3}}{2}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i \tag{15}
\end{equation*}
$$

So the general solution is

$$
\begin{equation*}
y=C_{1} x^{-1 / 2} \cos \left(\frac{\sqrt{3}}{2} \ln x\right)+C_{2} x^{-1 / 2} \sin \left(\frac{\sqrt{3}}{2} \ln x\right) \tag{16}
\end{equation*}
$$

Grading Scheme:

- Procedure (8 pts): Recognize it's Euler equation and know how to use characteristic/indicial equation (4); Know what the solution should look like (4).
- Details (12 pts): Correct characteristic/indicial equation (4); Correct roots (2+2); Correct solution (4).
- Common mistakes:
- Didn't recognize the type of the equation.
- All kinds of wrong form of solutions: $e^{-1 / 2} \cos \cdots, e^{-x / 2} \cos \frac{\sqrt{3}}{2} x \cdots, e^{-x / 2} \cos \frac{\sqrt{3}}{2} \ln x \cdots$, $e^{-x / 2} \cos \left(\ln \frac{\sqrt{3}}{2} x\right) \ldots$. All possible combinations.

Problem 3 (15 pts) Determine a lower bound for the radius of convergence of series solutions about each given point x_{0} for the differential equation

$$
\begin{equation*}
\left(1+x^{3}\right) y^{\prime \prime}+4 x y^{\prime}+4 y=0 ; \quad x_{0}=0, x_{0}=2 \tag{17}
\end{equation*}
$$

Solution. Write the equation into standard form

$$
\begin{equation*}
y^{\prime \prime}+\frac{4 x}{1+x^{3}} y^{\prime}+\frac{4}{1+x^{3}} y=0 \tag{18}
\end{equation*}
$$

We see that the singular points are solutions to

$$
\begin{equation*}
x^{3}+1=0 \tag{19}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
x^{3}=-1 \tag{20}
\end{equation*}
$$

To find all such x, we need to write $-1=R e^{i \theta}$. Clearly $R=1$. To determine θ we solve

$$
\begin{equation*}
\cos \theta=-1, \quad \sin \theta=0 \tag{21}
\end{equation*}
$$

which gives $\theta=\pi+2 k \pi$. Thus the solutions are given by

$$
\begin{equation*}
x=e^{i \frac{2 k+1}{3} \pi} \tag{22}
\end{equation*}
$$

Notice that k and $k+3$ gives the same x. Therefore the three roots are given by setting $k=0,1,2$.

$$
\begin{equation*}
k=0 \Longrightarrow x=e^{i \frac{\pi}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i ; k=1 \Longrightarrow x=-1 ; k=2 \Longrightarrow x=\frac{1}{2}-\frac{\sqrt{3}}{2} i \tag{23}
\end{equation*}
$$

Now we discuss

- $x_{0}=0$. The distance from 4 to the three roots are:

$$
\begin{gather*}
\left|0-\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right|=1 \tag{24}\\
|0-(-1)|=1 \tag{25}\\
\left|0-\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right|=1 \tag{26}
\end{gather*}
$$

The smallest distance is 1 . So the radius of convergence is at least 1 .

- $x_{0}=2$. The distances are

$$
\begin{align*}
\left|2-\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right| & =\left|\frac{3}{2}-\frac{\sqrt{3}}{2} i\right|=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{3} \tag{27}\\
|2-(-1)| & =3 \tag{28}\\
\left|2-\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right| & =\sqrt{3} \tag{29}
\end{align*}
$$

The smallest distance is $\sqrt{3}$. So the radius of convergence is $\sqrt{3}$.

Grading Scheme:

- Procedure (5 pts): Know need to find singular points (1); Know need to compute distances (1); Know need to find the shortest one (1); Know all the above should be carried out in the complex plane (2).
- Details (10 pts): $1+x^{3}=0$ (1); Correct solutions ($1+1+1$); Discussion at $x_{0}=0$ (3); Discussion at $x_{0}=2$ (3);
- Remarks:
- Trying to solve it (3) and apply ratio test (2) gets 5 pts (qualify as "know the procedure"). The other 10 pts for successfully carry this plan out.

Problem 4 (15 pts) Find the general solution:

$$
\begin{equation*}
y^{\prime \prime}+y=\frac{1}{\sin t} . \tag{30}
\end{equation*}
$$

Solution.

- This problem should be solved using variation of parameters.
- First solve the homogeneous equation $y^{\prime \prime}+y=0$:

$$
\begin{equation*}
y_{1}=\cos t, \quad y_{2}=\sin t \tag{31}
\end{equation*}
$$

- Compute the Wronskian:

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=1 \tag{32}
\end{equation*}
$$

- Compute the integrals:

$$
\begin{align*}
\int \frac{-g y_{2}}{W} & =\int \frac{-\frac{1}{\sin t} \sin t}{1} \mathrm{~d} t \\
& =\int-1 \mathrm{~d} t \\
& =-t \tag{33}\\
\int \frac{g y_{1}}{W} & =\int \frac{\frac{1}{\sin t} \cos t}{1} \mathrm{~d} t \\
& =\int \frac{\cos t}{\sin t} \mathrm{~d} t \\
& =\int \frac{\mathrm{d}(\sin t)}{\sin t} \\
& =\ln |\sin t| \tag{34}
\end{align*}
$$

- Get y_{p}.

$$
\begin{equation*}
y_{p}=t y_{1}+\ln |\sin t| y_{2}=-t \cos t+(\ln |\sin t|) \sin t \tag{35}
\end{equation*}
$$

- General solution is

$$
\begin{equation*}
y=C_{1} \cos t+C_{2} \sin t-t \cos t+(\ln |\sin t|) \sin t \tag{36}
\end{equation*}
$$

Grading Scheme:

- Procedure (5 pts): Know to use variation of parameters (1); Know need to solve homogeneous equation first (1); Know the formulas (1); Know $y_{1}=u_{1} y_{1}+u_{2} y_{2}$ (1); Know $y=C_{1} y_{1}+C_{2} y_{2}+y_{p}$ (1).
- Details (10 pts): Solution to homogeneous equation (2); correct g (1); Wronskian (1); u_{1} (2); u_{2} (2); y_{p} (1); y (1).
- Common mistake:
- Didn't know how to integrate $\frac{\cos t}{\sin t}$.

Problem 5 (15 pts) Find the general solution for

$$
\begin{equation*}
y^{(5)}-3 y^{(4)}+3 y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0 . \tag{37}
\end{equation*}
$$

Solution. Characteristic equation:

$$
\begin{equation*}
r^{5}-3 r^{4}+3 r^{3}-3 r^{2}+2 r=0 \tag{38}
\end{equation*}
$$

Easy to see $r_{1}=0$. The other four solutions would come from

$$
\begin{equation*}
r^{4}-3 r^{3}+3 r^{2}-3 r+2=0 \tag{39}
\end{equation*}
$$

Observe that $r_{2}=1$ is the 2 nd root. Factorize

$$
\begin{equation*}
r^{4}-3 r^{3}+3 r^{2}-3 r+2=(r-1)\left(r^{3}-2 r^{2}+r-2\right) \tag{40}
\end{equation*}
$$

We need to solve

$$
\begin{equation*}
r^{3}-2 r^{2}+r-2=0 \tag{41}
\end{equation*}
$$

which gives $r_{3}=2$. As

$$
\begin{equation*}
r^{3}-2 r^{2}+r-2=(r-2)\left(r^{2}+1\right) \tag{42}
\end{equation*}
$$

the last two roots are $r_{4,5}= \pm i$.
So the general solution is

$$
\begin{equation*}
y=C_{1}+C_{2} e^{t}+C_{3} e^{2 t}+C_{4} \cos t+C_{5} \sin t \tag{43}
\end{equation*}
$$

Grading Scheme:

- As in midterm 1, no "procedure" points for advanced and challenge problems.
- Characteristic equation (2); Roots (2×5); Solution (3).
- Common mistakes:
- Didn't solve the characteristic equation correctly.

Problem 6 (5 pts) Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{44}
\end{equation*}
$$

Assume that 0 is a singular point. Let $\left\{y_{1}, y_{2}\right\}$ be a pair of solutions. Prove: If there are real, non-integer, numbers $r_{1} \neq r_{2}$ such that both $Y_{1}:=x^{r_{1}} y_{1}$ and $Y_{2}:=x^{r_{2}} y_{2}$ are analytic at 0 with $Y_{1}(0) \neq 0, Y_{2}(0) \neq 0$, then 0 is regular singular.

Proof. Since y_{1}, y_{2} are solutions,

$$
\begin{equation*}
y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}=0, \quad y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}=0 \tag{45}
\end{equation*}
$$

Treating this as a system with unknown p, q we reach

$$
\begin{align*}
& y_{1}^{\prime} p+y_{1} q=-y_{1}^{\prime \prime} \tag{46}\\
& y_{2}^{\prime} p+y_{2} q=-y_{2}^{\prime \prime} \tag{47}
\end{align*}
$$

This gives

$$
\begin{equation*}
p=\frac{-y_{1}^{\prime \prime} y_{2}+y_{2}^{\prime \prime} y_{1}}{y_{2} y_{1}^{\prime}-y_{1} y_{2}^{\prime}} ; \quad q=\frac{-y_{1}^{\prime \prime} y_{2}^{\prime}+y_{2}^{\prime \prime} y_{1}^{\prime}}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}} \tag{48}
\end{equation*}
$$

Now recall $y_{1}=x^{-r_{1}} Y_{1}, y_{2}=x^{-r_{2}} Y_{2}$. Then we have

$$
\begin{align*}
y_{1}^{\prime} & =-r_{1} x^{-r_{1}-1} Y_{1}+x^{-r_{1}} Y_{1}^{\prime} \tag{49}\\
y_{2}^{\prime} & =-r_{2} x^{-r_{2}-1} Y_{2}+x^{-r_{2}} Y_{2}^{\prime} \tag{50}\\
y_{1}^{\prime \prime} & =r_{1}\left(r_{1}+1\right) x^{-r_{1}-2} Y_{1}-2 r_{1} x^{-r_{1}-1} Y_{1}^{\prime}+x^{-r_{1}} Y_{1}^{\prime \prime} \tag{51}\\
y_{2}^{\prime \prime} & =r_{2}\left(r_{2}+1\right) x^{-r_{2}-2} Y_{2}-2 r_{2} x^{-r_{2}-1} Y_{2}^{\prime}+x^{-r_{2}} Y_{2}^{\prime \prime} \tag{52}
\end{align*}
$$

Substitute into the formula for p and simplify, we get

$$
\begin{equation*}
x p(x)=\frac{\left[r_{2}\left(r_{2}+1\right)-r_{1}\left(r_{1}+1\right)\right] Y_{1} Y_{2}+2 x\left[r_{1} Y_{1}^{\prime} Y_{2}-r_{2} Y_{2}^{\prime} Y_{1}\right]-x^{2}\left[Y_{1}^{\prime \prime} Y_{2}-Y_{2}^{\prime \prime} Y_{1}\right]}{\left(r_{2}-r_{1}\right) Y_{1} Y_{2}+x\left(Y_{1}^{\prime} Y_{2}-Y_{2}^{\prime} Y_{1}\right)} \tag{53}
\end{equation*}
$$

As Y_{1}, Y_{2} are analytic at 0 , so are all their derivatives and therefore both the numerator and the denominator are analytic at 0 . All we need to check is whether the denominator is 0 at 0 .

Setting $x=0$ in the denominator becomes $\left(r_{2}-r_{1}\right) Y_{1}(0) Y_{2}(0)$ which is not 0 according to the assumptions in the problem $\left(r_{1} \neq r_{2}, Y_{1}(0) \neq 0, Y_{2}(0) \neq 0\right)$. Therefore $x p$ is analytic at 0 .

That $x^{2} q$ is analytic at 0 can be shown similarly.

Grading Scheme:

- Know what to do (3); Discussion of $x p$ (1); Discussion of $x^{2} q$ (1).
- Common mistakes:
- Didn't take a good look at homework 8 solution.
- Use Fuchs' Theorem to prove the claim. This problem is a "weaker version" of Fuchs' Theorem so such "proof" is essentially cyclic. It's like proving "There is no integer solution to $x^{3}+y^{3}=z^{3}$ " with "This is true because of Fermat's Last Theorem".

